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As we have pointed out one of unsolved problems
of General Relativity (and one that might be impos-
sible to ever solve) is that one of detecting invariant
differences between metrics. Two apparently differ-
ent metrics could be representing the same mani-
fold. It is highly non trivial to prove that a transfor-
mation of coordinates from one into the other ex-
ists or not. There are several criteria which seek to
classify at least type of solutions in an invariant way.
One of them is the Petrov classification.

Inspired by the fact that using the electromagnetic
field strength tensor (see Lesson 5) we can define



the electric and magnetic part of it:

and

B' = ~€9FFy, (2)
where i, 5, k£ run between 1 and 3.
We can now using the Weyl tensor define the fol-
lowing two new tensors:

def
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def 1 ﬁué

HO(’Y — 5\/ —geaﬁchwj,ﬂgu (4)



where « is a timelike vector and g is the determinant
of the metric. These tensors just in a mathematical
analogy with the electromagnetic case, are called
the electric and magnetic part of the Weyl tensor.
These tensors represent the Weyl tensor uniquely.
Notice that the Weyl tensor as the electromagnetic
tensor is a zero trace tensor. These new tensors
are symmetric (although is not immediately clear
from the definition), and they contain all relevant in-
formation about the Weyl tensor. We can define a
new, complex, tensor:

def :
Qow é Eory + ZHory — Q’ya (5)



It can be easily shown that it is a tensor in 3-dimensional
space.

Now this tensor can be classified according to its
algebraic structure, i.e. looking at the eigenvec-
tors and eigenvalues of it. Since its trace is zero
the sum of all its eigenvalues must be zero. The
classification is performed looking at the degree of
the polynomial equation (i.e. the equation defined
by the determinant of the condition for finding the
eigenvalues equation). Weyl tensors of different
Petrov types mean that the metrics are different.
But two different metrics (two different space-times)
can have the same Petrov type. So different Petrov



types is a sufficient condition for two metric repre-
sentations to be different space times but it is not a
necessary condition.

1. Type | : four simple principal null directions,

2. Type Il : one double and two simple principal
null directions,

3. Type D : two double principal null directions,



4. Type lll: one triple and one simple principal null
direction,

5. Type N : one quadruple principal null direction,

6. Type O : the Weyl tensor vanishes.

A type | @) tensor is called algebraically general;
otherwise, it is called algebraically special . Dif-
ferent events in a given spacetime can have differ-
ent Petrov types. The possible transitions between



Petrov types are shown in the figure, which can also
be interpreted as stating that some of the Petrov
types are "more special’ than others. For example,
type |, the most general type, can degenerate to
types Il or D, while type |l can degenerate to types
llI, N, or D.
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Physical Interpretation

1. Type D regions are associated with the gravi-
tational fields of isolated massive objects, such
as stars. The two double (repeated eigenval-
ues) null vectors define "radially” ingoing and
outgoing null congruences near the object which
Is the source of the field. Essentially these are
solutions like the Kerr-Newman black-holes and
represent the objects described by the No-Hair
theorem. If the object is rotating about some



axis, in addition to the tidal effects, there will
be various gravitomagnetic (not to be confused
with what above was explained as the magnetic
and electric part of the Weyl tensor effects: this
IS a weak-field associated with motion of the
sources analogous to electric currents gener-
ated by the motion of magnetic sources in elec-
tromagnetism), such as spin-spin forces on gy-
roscopes carried by an observer.

. Type lll regions are associated with a kind of
longitudinal gravitational radiation. In such re-
gions, the tidal forces have a shearing effect.



This possibility is often neglected, in part be-
cause the gravitational radiation which arises
in weak-field theory is type N, and in part be-
cause type Il radiation decays like O(1/r2),
which is faster than type N radiation.

. Type N regions are associated with transverse
gravitational radiation, which is the type we are
trying to detect with LIGO. The quadruple prin-
cipal null direction corresponds to the wave vec-
tor describing the direction of propagation of
this radiation. It typically decays like O(1/r),
so the long-range radiation field is type N.



4. Type Il regions combine the effects noted above
for types D, Ill, and N, in a nonlinear way.

5. Type O regions, or conformally flat regions, are
associated with places where the Weyl tensor
vanishes identically.

Examples

In some well studied solutions, the Weyl tensor has
the same Petrov type at each event:



1. The Kerr vacuum is everywhere type D,

2. some Robinson/Trautman vacuums are every-
where type I,

3. the pp-wave ( plane-fronted waves with parallel
propagation) spacetimes are everywhere type
N. pp-wave solutions are of the form ds? =
F(u, z,y)du?+2dudv+ dz? + dy? where u, v
are so-called null coordinates, i.e. u =t + z
and v =t — z and F' is a smooth function.



4. the Friedman-Robertson Walker cosmological
models are everywhere type O.

5. And any spherically symmetric spacetime must
be of type D (or O). All algebraically special
spacetimes having various types of stress-energy
tensor are known, for example, all the type D
vacuum solutions.

6. Some classes of solutions can be invariantly
characterized using algebraic symmetries of the



Weyl tensor: for example, the class of non-
conformally flat null electrovacuum or null dust
solutions admitting an expanding but nontwist-
ing null congruence is precisely the class of
Robinson/Trautmann spacetimes. These are
usually type Il, but include type Ill and type N
examples.
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