
Lesson 9
Spherical Symmetry and Relativistic Stars

Mario Dı́az

March 31, 2025

Spherically symmetric 4-D Riemann space
We call a Riemann manifold spherically symmetric when its isometry group is the group of rotations around
a point, i.e. O(3). This means that the metric should obey the Killing equations for each of its generators.
The orbits of O(3) are 2-dimensional spheres, and each one of them can be embedded in 3-D Euclidean
space. Its equation:

x2 + y2 + z2 = R2 (1)

where R is the radius of the sphere. A rotation is then described by:

x′i = xi cosα+ xj sinα, x′j = xi cosα+ xj sinα,

x′k = xk for i 6= j 6= k. (2)

The angle α is the group parameter. The Killing vector is:

kµ
[i,j]

= xjδµi − xiδµj . (3)

It’s better to write it this way:

J
(i)

def
= kµ

(i)

∂

∂xµ
. (4)

And our basis will be:

J
[xy]

= x
∂

∂y
− y ∂

∂x

J
[yz]

= y
∂

∂z
− z ∂

∂y

J
[xz]

= x
∂

∂z
− z ∂

∂x
(5)

Let’s use now spherical coordinates:

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ. (6)

1



Then,

J
[xy]

=
∂

∂φ

J
[yz]

= sinφ
∂

∂θ
+ cosφ cot θ

∂

∂φ

J
[xz]

= cosφ
∂

∂θ
− sinφ cot θ

∂

∂φ
(7)

We can use then θ and φ with r and t for the entire manifold. So we need to solve the Killing equations
(see definition of Killing vectors in the notes from Lesson 6). This means writing eq 72 from Lesson 6 for
gαβ(t, r, θ, φ), where x0 = t, x1 = r, x2 = θ and x3 = φ. The Killing vectors are then:

kα
(1)

= δα3

kα
(2)

= sinφδα2 + cosφ cot θδα3

kα
(3)

= cosφδα2 − sinφ cot θδα3 (8)

The Killing equation for the first vector kα
(1)

reduces to gαβ,3 = 0. So the metric is independent of φ. For

the others the Killing equations reduce to:

sinφ
∂

∂θ
gαβ + (sinφ),αg2β + (sinφ),βgα2

+(cosφ cot θ),αg3β + (cosφ cot θ),βgα3 = 0 (9)

cosφ
∂

∂θ
gαβ + (cosφ),αg2β + (cosφ),βgα2

−(sinφ cot θ),αg3β + (sinφ cot θ),βgα3 = 0 (10)

We can simplify this using the identities:

sinφ(sinφ),α + cosφ(cosφ),α = 0

cosφ(sinφ),α + sinφ(cosφ),α ≡ φ,α (11)

and:

φ,αg2β + φ,βgα2 + (cot θ),αg3β + (cot θ),βgα3 = 0 (12)

We can multiply (9) by sinφ and (10) by cosφ, and add the results. Using (11):

∂

∂θ
gαβ − φ,α cot θg3β − φ,β cot θgα3 = 0 (13)

(12) is an algebraic equation, we can see that:

1. For 2 6= α 6= 3, 2 6= β 6= 3 the equation is fulfilled identically.
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2. For 2 6= α 6= 3, β = 2:

gα3 = 0, α = 0, 1. (14)

3. For 2 6= α 6= 3, β = 3:

gα2 = 0, α = 0, 1. (15)

4. For α = 2, β = 2:

g23 + g32 = 2g23 = 0 (16)

5. For α = 2, β = 3:

g33 = g22 sin2 φ (17)

6. For α = β = 3, we get again (17).

Looking now at the differential equation (13) we get:

1. For 2 6= α 6= 3, 2 6= β 6= 3

∂

∂θ
gαβ = 0 α, β = 0, 1. (18)

2. For 2 6= α 6= 3, β = 2, and identity because of (15).

3. For 2 6= α 6= 3, β = 3, and identity because of (14).

4. For α = 2, β = 2: ∂
∂θg22 = 0.

5. For α = 2, β = 3 an identity because of (16), and

6. For α = β = 3 an identity because of (17).

And...alas!

ds2 = g00dt
2 + 2g0rdrdt+ grrdr

2 + F (t, r)(dθ2 + sin2 θdφ2).

This is the more general spherically symmetric metric. Notice that it can depend of a ”time-like” coordi-
nate and a ”radial” one. But we have not discussed much about coordinate restrictions given by the Killing
equations. This is a non-trivial issue that I will not discuss here. But the interested student can take a look at
the excellent book: An Introduction to General Relativity and Cosmology by J. Plebanski and A. Krasinski,
published by Cambridge in 2006. The study of the Killing equations I presented follows to a great extent the
treatment followed in this book . Static space-times will be those in which we have:

1. ∂
∂t is a Killing vector, i.e. the metric components do not depend on t, and additionally,

2. the metric is invariant under time reversal, i.e. changing t for −t.
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We can take:

g00 = −eν , grr = eλ, F (t, r) = r2. (19)

And the metric becomes:

ds2 = −eνdt2 + eλdr2 + r2dΩ2. (20)

where

dΩ2 = dθ2 + sin2 θdφ2 (21)

Now with this

gαβ =


−e−ν 0 0 0

0 e−λ 0 0
0 0 r−2 0
0 0 0 r−2 sin−2 θ

 (22)

We can now use dot for t derivatives and prime for r derivatives. The non vanishing components of the
Einstein tensor are:

G0
0 = e−λ

(
λ′

r
− 1

r2

)
+

1

r2
, (23)

G0
1 = −e−λr−1λ̇ = −eλ−νG1

0, (24)

G1
1 = −e−λ

(
ν′

r
+

1

r2

)
+

1

r2
, (25)

G2
2 = G3

3 =
1

2
e−λ

(
ν′λ′

2
+
λ′

r
− ν′

r
− ν′2

2
− ν′′

)
+

1

2
e−ν

(
λ̈+

λ̇2

2
− λ̇ν̇

2

)
. (26)

The Bianchi identities reveal that (26) vanishes automatically if (23), (24) and (25) all vanish. We have
then 3 equations to solve:

e−λ
(
λ′

r
− 1

r2

)
+

1

r2
= 0, (27)

λ̇ = 0 (28)

e−λ
(
ν′

r
+

1

r2

)
− 1

r2
= 0, (29)

Adding (27) and (29), we get

λ′ + ν′ = 0 (30)

The integration gives

λ+ ν = h(t), (31)

4



where h is an arbitrary function of integration.
We see that using (28) λ is only a function of r and so it is (27)

e−λ − re−λλ′ = 1, (32)

which is the same as:

(re−λ)′ = 1, (33)

So integrating we get:

re−λ = r + constant (34)

For reasons we will make clear later we choose it to be −2m, obtaining:

eλ =
1

1− 2m
r

. (35)

To this stage the metric has been reduced to:

gαβ = diag[−eh(t)(1− 2m/r),

(1− 2m/r)−1, r2, r2 sin2 θ], (36)

To eliminate h(t) we transform to a new time t′

t′ =

∫ t

c

e
1
2h(u)du (37)

where c is arbitrary and ct. This will get us:

ds2 = −(1− 2m/r)dt2 + (1− 2m/r)−1dr2

+r2dθ2 + r2 sin2 θdφ2, (38)

This is the famous Schwarzschild line element.

The Schwarzschild radius
It was already realized in the 18th century that there was a particular relationship between the mass and
the radius of a star for which the escape velocity would be larger than the speed of light. Using Newto-
nian physics we can calculate the escape velocity of an object as the speed needed to escape the Earth’s
gravitational attraction.

1

2
mv2 −GMm

r
= 0 (39)

from this

v =

√
2G

M

r
(40)
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For Earth the escape velocity is 11.2km/s.
If we look at the escape speed for a neutron star: Using G = 6.7×10−11m3/Kgs2 and M = 1.4M� ≈

2.8 × 1030Kg and assuming a radius r = 10Km we get a escape speed slightly lower than c/2: half the
speed of light! We can see that for a radius:

r =
2GM

c2
(41)

the escape velocity is equal to the speed of light. This radius is called the Scharwzschild radius. For a star
like the Sun this radius is: r = 3 × 103m while its radius is r� = 7 × 108m. When the object is a totally
collapsed object the topologically spherical surface defined by the Schwarschild radius is called an event
horizon.

The precession of the perihelion
In Newtonian gravitation we have:

~F = −m µ

r2
r̂, (42)

With this we get that the angular momentum is conserved, so the problem takes place in a plane and using
planar polar coordinates (R,φ), the equation of motion becomes:

(R̈−Rφ̇2)R̂ +
1

R

d

dt
(R2φ̇)φ̂ = − µ

R2
R̂. (43)

Taking the scalar product with R̂ gives:

R̈−Rφ̇2 = −µ/R2, (44)

If we take the scalar product with φ̂ we see that:

d

dt
(R2φ̇) = 0 (45)

And we see that the angular momentum is conserved:

R2φ̇ = h (46)

To obtain the equation for the orbit we use u = R−1 and we get:

d2u

dφ2
+ u =

µ

h2
(47)

where h = R2φ̇ is the constant angular momentum. This is called Binet’s equation and is introduced in the
Classical Mechanics courses. The solution is:

u =
u

h2
+ C cos(φ− φ0), (48)

Where C and φ0 are constants.
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Going back to R we get:

l/R = 1 + e cos(φ− φ0), (49)

where l = h2/µ and e = Ch2/µ. This is the polar equation of a conic curve in which l is semi-latus rectum,
e the eccentricity, and φ the orientation respect to the x axis. If 0 < e < 1 the curve is an ellipse and the
point of nearest approach to the origin is called perihelion. In the case of the two-body problem using the
reduced mass we still get the same result even if the two bodies are comparable in size.

The variational method for geodesics
I will present a treatment for the calculation of geodesics that could be helpful in some instances, but also
sheds light on the geometrical meaning of geodesics. We define first a Lagrangian functional:

L = L(xa, ẋa, u), (50)

where u is a parameter along the curve, and the dot signifies derivation respect to u. We will define this
functional as:

L = [gab(x)ẋaẋb]
1
2 . (51)

We the define the action: ∫ P2

P1

Ldu =

∫ P2

P1

ds = s, (52)

where s is the interval between two arbitrary point P1 and P2 on a curve connecting them.
The geodesics is defined as the curve joining these two points whose interval is an extremum. So we

need to solve for δs = 0 The solution is given by Euler-Lagrange equations:

∂L

∂xa
− d

du

(
∂L

∂ẋa

)
= 0. (53)

To avoid square roots:

2L

[
d

du

(
∂L

∂ẋa

)
− ∂L

∂xa

]
= 0. (54)

which can be written:

d

du

(
∂L2

∂ẋa

)
− ∂L2

∂xa
= 2

∂L

∂ẋa
dL

du
. (55)

Using (51) we get:

d

du

(
∂L2

∂ẋa

)
− ∂L2

∂xa
=

d

du

[
∂

∂ẋa
(gbcẋ

bẋc)

]
− ∂

∂xa
(gbcẋ

bẋc)

=
d

du
(2gabẋ

b)− ∂gbc
∂xa

ẋbẋc

= 2gabẍ
b + 2

∂gab
∂xc

ẋbẋc − ∂gbc
∂xa

ẋbẋc

= 2gabẍ
b + 2ẋbẋcΓbca (56)
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and the right hand side of (56) yields:

2
∂L

∂ẋa
dL

du
= 2

∂

∂ẋa
(gbcẋ

bẋc)1/2
d

du

(
ds

du

)
= 2(gbcẋ

bẋc)−1/2gadẋ
d d

2s

du2

= 2

(
d2s

du2

/
ds

du

)
gabẋ

b. (57)

Equating (56) and (57) and choosing the parameter u = s (57) is zero and we get:

ẍb + Γ abcẋ
bẋc = 0 (58)

which we knew from before, but now we know that we can define the quantity:

2K ≡ gab(x)ẋaẋb = α, (59)

such that:

∂K

∂xa
− d

du

(
∂K

∂ẋa

)
= 0 (60)

and we require 2K:

2K = α =


0,

+1,

−1,

(61)

What we will do now is look at the geodesics of the Schwarzschild metric. And we will use from the
previous paragraph:

2K = −(1− 2m/r)ṫ2 + (1− 2m/r)−1ṙ2

+ r2θ̇2 + r2 sin2 θφ̇2 = −1 (62)

Deriving the Euler-Lagrange equations from (59), the three simplest ones correspond to a = 0, 2, 3 in (60):

d

dτ
[(1− 2m/r)ṫ] = 0, (63)

d

dτ
(r2θ̇)− r2 sin θ cos θφ̇2 = 0, (64)

d

dτ
(r2 sin2 θφ̇) = 0. (65)

we need four equations to find the four unknown, t = t(τ), r = r(τ), θ = θ(τ), φ = φ(τ), and
(63)-(65) plus (62) provide them. First we can see by picking θ = 1

2π that θ̇ = 0 and higher derivatives as
well. This means that motion occurs in a plane like with Newtonian gravity. So we get:

r2φ̇ = h (66)
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where h is a constant (remember (47)). The same manner (63) yields:

(1− 2m/r)ṫ = k, (67)

where k is a constant, and substituting in (62)

k2(1− 2m/r)−1 − (1− 2m/r)−1ṙ2 − r2φ̇2 = 1 (68)

We do the same we did with the classical theory and make u = 1/r, which yields:

dr

dφ
=
dr

dt

1

φ̇
= − 1

u2
du

dφ
,

ṙ = −φ̇r2 du
dφ

= −hdu
dφ

(69)

Then using (66) we get from (69),(
du

dφ

)2

+ u2 =
k2 − 1

h2
+

2m

h2
u+ 2mu3. (70)

This is a first order non-linear differential equation. It can be integrated using elliptical functions.
But we can differentiate respect to φ once more and get:

d2u

dφ2
+ u =

m

h2
+ 3mu2. (71)

We can compare it with the Binet equation from Classical mechanics:

d2u

dφ2
+ u =

µ

h2
(72)

and see that in the relativistic version we have an extra term 3m/r2. The ratio of the two terms is:

3mu2

m/h2
=

3h2

r2
(73)

And this quantity for Mercury is ≈ 10−7 (and quite much smaller for all the other planets!).
We will solve equation (72) by a perturbation scheme. We define a parameter (c = 1):

ε = 3m2/h2, (74)

Now we get (′ = d/dφ):

u′′ + u =
m

h2
+ ε

(
h2u2

m

)
. (75)

And assume the solution is

u = u0 + εu1 +O(ε2). (76)
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We substitute and find:

u′′0 + u0 −
m

h2
+ ε

(
u′′1 + u1 −

h2u20
m

)
+O(ε2) = 0 (77)

We make each power of ε equal to zero. To zero order we recover the classical solution:

u0 =
m

h2
(1 + e cosφ), (78)

where we took φ0 = 0. The first order:

u′′1 + u1 =
m

h2
(1 + e cosφ)2

=
m

h2
(1 + 2e cosφ+ e2 cos2 φ)

=
m

h2
(1 +

1

2
e2) +

2me

h2
cosφ+

me2

2h2
cos 2φ (79)

where we used that 2 cos2 φ = 1 + cos 2φ, And we try:

u1 = A+Bφ sinφ+ C cos 2φ, (80)

Then we get:

A =
m

h2
(1 +

1

2
e2), B =

me

h2
, C = −me

2

6h2
, (81)

And the general solution becomes:

u ' u0 + ε
m

h2
[1 + eφ sinφ+ e2(

1

2
− 1

6
cos 2φ)]. (82)

The most important term in the correction is eφ sinφ because it grows which each orbit. So we keep:

u ' m

h2
[1 + e cosφ+ εeφ sinφ], (83)

or neglecting terms of order ε2 can be put:

u ' m

h2
{[1 + e cos[φ(1− ε)]}, (84)

So the orbit is now approximately an ellipse but the period is not 2π, it is:

2π

1− ε
' 2π(1 + ε). (85)

The planet travels in an ellipse but with its axis rotating, moving on by an amount 2πε between the two
points of closest approach.
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In non-relativistic units it becomes:

2πε ' 24π3a2

c2T 2(1− e2)
, (86)

where a is the semi-major axis of the ellipse and T is the period of the orbit.

Although the precession is not necessarily a relativistic phenomenon -perturbation from the other planets
has these effects as well- only general relativity explains the one in Mercury.

In what follows there is a table with the predicted GR precession for other bodies.

One interesting case is 1566 Icarus. 1556 Icarus is an Apollo asteroid (a sub-class of near-Earth aster-
oid) whose unusual characteristic is that at perihelion it is closer to the Sun than Mercury (it is said to be a
Mercury-crosser asteroid).

At perihelion is at 0.187 AU from the Sun while aphelion is about 2 AU. Its precession was measured in
1971.

Theoretical and Observational values of residual precession

Planet GR prediction Observed
Mercury 43.0 43.1± 0.5
Venus 8.6 8.4± 4.8
Earth 3.8 5.0± 1.2
Icarus 10.3 9.8± 0.8

I will not treat the bending of light, the other major specific prediction of GR which can be calculated using
the Schwarschild metric.

Static perfect fluid solutions
Static stars mean the fluid has no motion. So the energy -momentum tensor is:

Tµν = (ρ+ p)UµUν + pgµν , (87)
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The only non-zero component of ~U is U0 which because of the normalization

~U · ~U = −1 (88)

implies:

U0 = e−ν/2, U0 = −eν/2 (89)

where I have used the metric (20).
T then will have components:

T00 = ρeν ,

Trr = peλ,

Tθθ = r2p,

Tφφ = sin2 θTθθ, (90)

All others vanish. We expect that the equation of state due to thermodynamic equilibrium (static solution)
there will be a solution:

p = p(ρ, S) (91)

Furthermore we can assume that p only depends on ρ.
The conservation laws Tαβ ;β = 0 imply just one equation, due to symmetry:

(ρ+ p)
dν

dr
= −dp

dr
. (92)

This equation tells what should be the pressure gradient to sustain the star in equilibrium.

Now looking at Einstein equations we will replace λ(r) with a function m(r)

m(r) =
r

2
(1− e−λ), (93)

So:

grr = eλ =
1

1− 2m(r)
r

(94)

The (0, 0) component of Einstein’s eqs. gives:

dm(r)

dr
= 4πr2ρ. (95)

We will need to explore the meaning of this m(r) carefully because energy is not localizable. From
Grr = 8πTrr we get,

− 1

r2
eλ(1− e−λ) +

2

r

dν

dr
= 8πpeλ (96)

and
dν

dr
=
m(r) + 4πr3p

r[r − 2m(r)]
(97)

We can see that if we have an equation of state p = p(ρ) then this equation with (92), (95) and (97) are four
equations for the four unknowns ν,m, ρ, p. This fully determines the problem.
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The exterior geometry
In the region outside the star we have ρ = p = 0, and we get,

dm

dr
= 0, (98)

dν

dr
=

m

r(r − 2m)
. (99)

which have solutions, if we require that ν → 0 as r →∞:

m(r) = M = const., (100)

eν = 1− 2M

r
. (101)

which gives our old friend,the Schwarzschild metric:

ds2 = −(1− 2m/r)dt2 + (1− 2m/r)−1dr2 + r2dΩ2, (102)

which for large r becomes:

ds2 = −(1− 2m/r)dt2 + (1 + 2m/r)dr2 + r2dΩ2, (103)

Birkhoff’s theorem (Without proof)

The Schwarzschild metric is the only spherically symmetric, asymptotically flat solution to Einstein’s
vacuum field equations.

The interior structure of a star

Dividing equation (92) by ρ + p and eliminating ν from (97), we obtain the Oppenheimer-Volkov
equation,

dp

dr
= − (ρ+ p)(m+ 4πr3p)

r(r − 2m)
, (104)

Combine with equation (95) and an equation of state this gives three equations for the three unknowns
m, ρ, p.

Notice that we can get ν once we solve this three equations, just from (93). In the integration process
we will need to check carefully matching conditions at the surface and reasonable initial conditions. I f we
look at the Newtonian limit of the fluid equations we consider p� ρ which means 4πr3p� m Because we
expect the metric to be nearly flat we also require m� r. So equation (105) becomes:

dp

dr
= −ρm

r2
(105)

This is the same equation for hydrostatic equilibrium in Newtonian stars.
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Exact Interior solutions
We can assume ρ = const Note that speed of sound (dp/dρ)1/2 is infinite! We can integrate (96) right away,

m(r) = 4πρr3/3, r 6 R, (106)

where R is the undetermined star radius. Continuity means:

m(r) = 4πρR3/3 = M, r > R, (107)

where M is the Schwarzschild mass. Solving the O-V equations (105)

dp

dr
= −4

3
πr

(ρ+ p)(ρ+ 3p)

1− 8πr2ρ/3
(108)

This can be integrated from an arbitrary central pressure pc, to give,

ρ+ 3p

ρ+ p
=
ρ+ 3pc
ρ+ pc

(
1− 2

m

r

)1/2
(109)

From which we can see that:

R2 =
3

8πρ

[
1− (ρ+ pc)

2

(ρ+ 3pc)2

]
(110)

pc = ρ[1− (1− 2M/R)1/2]/[3(1− 2M/R)1/2 − 1]. (111)

Replacing pc in (110):

pc = ρ
(1− 2Mr2/R3)1/2 − (1− 2M/R)1/2

3(1− 2M/R)1/2 − (1− 2Mr2/R3)1/2
(112)

and using the boundary conditions at r = R

eν =
3

2
(1− 2M/R)1/2 − 1

2
(1− 2Mr2/R3)1/2, r 6 R (113)

eλ = (1− r2/R2)−1, r 6 R (114)

Notice that eq. (112) implies pc →∞ as M/R→ 4/9.
This is a very general limit for M/R even for truly realistic stars.

Buchdal’s interior solution
Buchdal (1981) found a solution for the equation of state:

ρ = 12(p∗p)
1/2 − 5p, (115)

where p∗ is an arbitrary constant. It has two properties:
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• causality: demand (dp/dρ)1/2 < 1;

• for small p it reduces to

ρ = 12(p∗p)
1/2, (116)

where p∗ is an arbitrary constant, which in Newtonian theory is an n = 1 polytrope. In Astrophysics a
polytrope is a solution of the Lane-Emden equation:

1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
+ θn = 0 (117)

where

ξ = r

(
4πGρ2c

(n+ 1)Pc

) 1
2

(118)

and

ρ = ρcθ
n, (119)

where c refers to values of pressure and density at the center of the sphere. The polytropic equation of state
is:

p = Kρ(1+
1
n ), (120)

where K is a constant. Causality then demands additionally:

• p < p∗,

• ρ < 7p∗

It is customary to introduce another free parameter defining a new radial coordinate r′:

u(r′) := β
sinAr′

Ar′
, A2 :=

288πp∗
1− 2β

, (121)

And then,

r(r′) = r′
1− β + u(r′)

1− 2β
, (122)

You can check the complete solution in Schutz’ book.
But one important thing to notice is that β is the value of M/R on the surface of the star.

This justifies backtracking to the physical relevance of the metric terms.
The metric is independent of the time, meaning that any particle following a geodesic has constant momen-
tum p0, which we can define to be p0 = −E. But of course a local inertial observer at rest instantaneously at
any radius r of S-T measures a different energy. The four velocity has to be U i = dxi/dτ = 0 and ~U · ~U = 1
implies U0 = e−ν . And the energy measured will then be:

E = −~U · ~p = e−νE (123)
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So E is the energy that a distant observer will measure if the particle is far away.
Let’s look at a photon emitted at radius r1 and received very far away. If its frequency in the local inertial

frame is νem, then the local energy will be hνem and the associate conserved quantity is: hνemeν(r1). Then
the redshift will be:

z =
λrec − λem

λem
=
νem
νrec

− 1 (124)

will be:

z = e−ν(r1) − 1 (125)

Then back to Buchdal’s solution we see that the surface redshift of the star is:

z = (1− 2β)−1/2 − 1 (126)

It can be shown (see Schutz) that reasonable physical demands forces

0 < β <
1

6
(127)

This range covers physically reasonable models, from Newtonian (β ≈ 0) to a very relativistic surface
redshift of 0.22. It was mentioned before that there can be no uniform density stars with radii smaller than
9/4M . To support this radii it will require pressures larger than infinite! This is Buchdal’s Theorem. If we
are at the limit of this configuration any extra pressure inwards would make it collapse. The interior solution
will be vacuum and we have a black hole.
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