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1 Gauge transformations

A type of coordinates that leave equation (1) with the condition |k 5| < 1 unchanged is a small change in
the coordinates of the form:

2 = 2% + £ (z?), (D

We assume £* is small in the sense that [£* 5| < 1

A = % =8 +&% 5, @
Mg =06% — €% 5+ O(I€* 5). 3)
To first order this gives:
Jarp’ = Nap + hap — o, + Epias C))
where:

€ = Napt” ®)

The effect of this change of coordinates is to change hqg:
hag = hag — a8 — €8, (6)

If |¢ « /3\ < 1 then the new hg is also small. A change like this is called: a gauge transformation. This
freedom of the Einstein’s theory is extremely useful and important.

The Riemann tensor:
Using (1) the calculation yields:

1
Rapuw = 5 (havsu + Mopav = happy = Rovan) N

The trick or magic: i.e. the fact that the Riemann tensor does not depend on the small quantities &, g is
precisely the fact that they are second order, and we don’t need to consider them at first order.



Weak-field Einstein equations

We will define
g = 1""hag, ®)
W =P, ©)
the trace:
hi= he (10)

and another tensor called the “trace reverse” of hqag

- 1
hB = pos — inaﬁh. (11)
The trace is:
_ - 1 4
h:=he = h*Png, — iﬂaﬁﬂﬁah =h=gh==h (12)
and the inverse of (19) is the same equation:
af rag 1 af 7,
hF = h% — 37 h. (13)
The Einstein tensor becomes:
1 - _ _
GocB = _i[haﬁ,# L Waﬁhw’w _ hozp,ﬁ M (14)
—hg, o+ O(2g))- (15)
The Lorentz gauge
Things would be simpler if we required:
h? 5 =0. (16)
Notice, that from the definition of A%# in eq. (19), we get:
Ry N—, (17)
B 9™

We just need to choose coordinates where these equations, (24) agd (25), would be satisfied.
Eq (24) is called the Lorentz gauge. Let’s assume we have an 2*# for which this does not hold. We look
for a new one:

BEZ:/EW) = Eﬁojd) — & — &t muﬁa,a (18)
The divergence of this new A\ will be:

B(new),uz/ L= E(old);u/ - g,u,zjy. (19)

)



But then all we need is:

Ogr = gmv, = Rt (20)

vV

Notice that the [] operator above is nothing else than the standard Laplacian operator minus the second time
derivative, i.e. for any function f:

o= = (-2 9 21
F=1"w=\—2*V ! @n

The inhomogeneous form of this equation always have a solution provided the function that makes the
equation inhomogeneous is “well behaved”. But the solution will be defined up to any other function 7
which satisfies:

On* =0 (22)

This function will of course satisfy equation (28). This procedure defines rather than a gauge, a class of
gauges. In this gauge:

1 -
G*P = —§Dh“5 (23)
And consequently the weak field Einstein equations become:
OrMY = —167TH (24)

These are also called the field equations in the “’linearized” theory.
But notice that in vacuum these equations are:

G =08 =0 (25)

But this means that if we assume a time dependence for the metric perturbation A it does satisfy the
wave equation if its a solution of Einstein’s equations!

We have seen that if we are far enough from the sources and assume that the field is weak, we can reduce
the metric to a form like the one in equation (1) Lesson 9:

where |hop| < 1 everywhere, and 7,4 is the flat Minkowski metric. We also proved that by a judicious
choice of gauge we can arrive at the following form of Einstein’s vacuum equations:

1 -
GoP = —§Dh“5 =0 (27)
or more explicitly:
62 2 T ﬁ
V2R =0 28
( - ) 8)



This is the wave equation. We will explore the implications of Einstein’s equations being reduced to this
form. We can assume a solution of the form:

hP = A%P exp(ikqz®), 29)

where {k,} is a real one form and {A®?} some tensor whose components -constant- could be complex.
Equation (1) can be written:

vpaf _
n"h” ., =0, (30)
Using (2) we get:
he? | = ik,h? (31)
and then (3) :
" heP L, = —n"kuk,h*P =0, (32)
and this can only vanish if
" kuk, = k"k, =0, (33)

This means k is a null vector, tangent to the world ling of a photon (a Minkowkski null vector). From the
definition (4) we can see that if k,z® is constant then A*? is constant:

kox® = kot + k - x = const, (34)
where k refers to the spatial components of the coordinates. The Bianchi identities require:
paB
R =0, (35)
We can see using equation (6) that this immediately translates in:
Baﬁwﬂ = ikgh®? = ikg A“P exp(ikaz®)
=kg A% = (36)

This implies that A% is orthogonal to k. Usually the kY component of the vector is called the frequency of
the wave w, so,

k— (w,k) (37)
We can parametrize the curve to which k is tangent in this manner:
() = kFX+ 1, (38)

where )\ is a parameter and [* is a constant vector (at A = 0 is the position of a photon traveling along this
line. If we calculate

kuxt(X) = k kM + k10 = kM = const., (39)



This means that the gravitational wave travels, like a photon, at the speed of light, and k is the direction of
travel. The fact that £ is null means:

w? = [Kk|?, (40)

which is referred at the dispersion relation for the wave. So the phase velocity:

2

w
— =1 41
Wb @1
and the group velocity also:
Ow
— =1 42
o b (42)

So the solution (4) A*# exp(ikq,z®) to our vacuum Einstein’s equation is a wave, a plane wave. Any general
solution of equation (3) will be a superposition of plane waves.

The transverse-traceless gauge
It would be good if we could characterize the nature of the plane gravitational wave further: i.e. it would
be good if we could estimate what are the actual measurable physical parametere and what are the effects of
those for a physical observer. Can we use our gauge freedom to find any further restriction than just (11)?
Any vector solution of (3), namely a &,,

82
(—atQ + V2> £a=0 (43)

can we use to see if we can “refine” the physical parameters of our solution better. We can choose:
£a = Boexp(ik,zt), (44)

where B, is a constant and k* is the same one as before. This would give the following change in our
original solution:

hag | =has” = €ap = Epa 43)
which give a new
hag ™ =h3g? —€ap —&p.a + 1asE", (46)
hYFW = hQEP — iBoks — iBgka + inas B k. (47)
and we can choose B, so
A% =0 (48)
and
AU =0 (49)



where U is a fixed four-velocity. Equations (11),
APRs =0 (50)

(23) and (24) constitute together what is called the transverse-traceless (TT) gauge conditions. Traceless
because of equation (23) and transverse because we’ll see that equation (25) means that the perturbation -i.e.
the wave- is transversal to the direction of propagation. In passing we should mention that all the constraints
utilized make our 4 from equation (4) is now the same as the original & in the T'T" gauge.

hls =hlh (51)

What now remains is physically significant. We can choose U such that U = 47 o Then equation (24)
means:

AnpUP = Ap56°0 = Apo =0 (52)

and this for all . In this frame we can we can orient the space coordinate axis such that the space
componentsk is along the z direction, ¥ — (w,0,0,w) and A,, = 0 This means that A,z should be of
this form:

0 O 0 0
TTY 0 A:I::Jc A:z:y 0
0 O 0 0

y

V===

Plane waves traveling in the z direction

The geodesic equation
Let’s look at a particle that is in the background of this plane gravitational wave. The particle has velocity
U such that the geodesic equation:

d
—U*+1r*,Ut0" =0 54
dr
Before the wave arrives the particle is at rest, so the initial value of the acceleration is:
d « «@ 1 af
EU lo=—1I"%0 = —35" (hgo,0 + hog,0 — hoo,3) (55)



The particle remains forever at rest?! Yes but only in this coordinate system: the 7"I" gauge is a system that
is attached to the coordinates. If we have to particles, one of them at x = 0 and the other at x = ¢, both at
y = z = 0, the proper distance:

Al = / |ds?|Y/? = / |gapdzda?|'/?
- / ‘gmc|1/2dx ~ |ng(x = 0)|1/2€
0

~ [1 T (= o>] ; (56)

We can see that the proper distance changes with time. An interesting Lesson regarding the meaning of
coordinates in General Relativity:

1. Coordinates have little significance per se.
2. Coordinate dependent quantities should be taken with a grain of salt.
3. An example of this is the "’position” of a particle.

4. Coordinate independent numbers are the relevant ones and are the ones that in general contain physical
information.

5. Proper distance is an example.

The equation of geodesic deviation: tidal forces
Let’s look at two neighboring particles that are moving along geodesics of the gravitational wave. Equation
(61) from Lesson 7:

Vv (VvE") = R%eaVPVee! (57)

can be written in terms of a vector U tangent to the geodesics of the spacetime “generated” by the passing
gravitational wave.

Vi (Vi€ = R%eaUUE? (58)

If we write in this in the inertial local frame (we are not using the coordinates of the T'T" gauge), where the
connection coefficients vanish and then covariant derivatives are just regular ones:

d2

Wga _ RabchbUcfd (59)
U =dz /dr is the four velocity of the two particles. We need to work only up to first order in the coordi-
nates... With this U — (1,0,0,0) and & — (0, ¢,0,0) and equation (34) becomes

d? 0?

ﬁfa = ﬁﬁa = eR%0s = —€R%020 (60)
We can now attempt to an interpretation of equation (35). The Riemann tensor is gauge invariant, and 5,
the connecting vector between the two particles, gives the proper lengths of the vector that “measures” the



distance between the two particles, and the right hand side tells exactly how these are changing. We can
write the components of this equation in the 77" gauge, but we know that the result is independent of the
gauge:

1
R¥020 = Ryowo = =h1T

5 zz,00*
1

RY020 = Ryoz0 = ihff,oo' (61)
1

RY0y0 = Ryoyo = §h;§f 00 = —R%0z0.

So for example for two particles initially separated in the = direction:

02 1 02 0? 1 02
7m:77hTT 7y:77hTT 62
8t2§ 2 g2 v 8t2£ 2 92"y ©2)
Similarly for two particles separated in the y:
872 yzlei TTzil 872 T
ot? 2 o2 vy 2 otz v
82 T 1 82 T
ot = 3ol ©
Polarization
Let’s assume a gravitational wave of the form:
ds* = —dt* + [1 — €hye(t — x))d2?
+[1 + €hyy (t — 2))dy? + d2>. (64)

The proper distance between two particles in the (z—y) plane which have positions (xo, yo) and (zo+dz, yo)
is given by:

ds* = [1 — ehyp(t — x)]da? (65)

This is showing that the distance along the x axis is being stretched and squeezed along the x axis, while if
we look at two particles which lay at the same value of y will be stretched and squeezed along the y axis. We
can think of a ring of particles laying in a plane perpendicular to the z direction and the ring will be stretched
and elongated in an ellipse whose major axis is switching back and forth between the y and x axis and vice
versa for the minor one. This is called a 4+ polarized wave. What about the crossed term? We can pick a
coordinate system:

ds? = —dt® + dz® + dy?
+[1 — €hyy (t — x)]dedy + d2>. (66)

We can perform a rotation through 45° in the x — y plane

1

xr—=IT=—(x+y), Yy—y= (x—y) 67)

[N}
Sl
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ds® = —dt® + [1 + ehyy(t — 2)]dz?
H[1 — ehyy (t — x)]dy* + d2°. (68)

which can be seen that gives the same pattern just displaced 45°. This is called a cross polarization.

An exact plane wave
Exact solutions of the Einstein’s eqs. representing gravitational waves can be found. For this it is better to
work in so called null coordinates:

u=t—z (69)
v=1+z2 (70)

The Minkowski metric in these coordinates will be:
ds* = —dudv + dz? + dy> (71)
In looking for a solution representing a plane wave makes sense to look for:
ds® = —dudv + f?(u)dz® + ¢*(u)dy? (72)

where f and g will need to be determined and we expect the solution to be a forward moving so we expect it
to be only functions of u. The only non-vanishing connection coefficients are (dot means derivative respect
to u);

szu:f/fa Fyyu:g/g
I =2f/f. Iy =24/g
Rmuwu = _f/f7 Ryuyu = _g/g7

The only remaining vacuum field equation is:

f/f+d/g=0 (73)

These are actually a family of solutions. We can make an arbitrary pick for g and this would determine f.
i.e. if we pick f such that

F1f=h(u) (74)
all we have to do is solve for
g/g = —h(u) (75)

The solutions are determined up to two constants of integration. This family of solutions are called linearly
polarized plane gravitational waves. They represent plane-fronted gravitational waves, far from the sources.
It can be shown that they can cast in a form that is similar to first order to the general solutions we found in
the weak field limit.



Measuring changes in distance with light

Gravitational wave detection started with the efforts of Joseph Weber who developed the technology of
resonant bars. Resonant bars achieved very high sensitivity, particularly after the incorporation of cryogenic
techniques to reduce thermal noise in the materials. Over the last twenty years interferometry has become
the technology of choice to detect gravitational waves. The following is a simple sketch of an interferometer:

A Michelson interferometer

The following formula apply to the calculation of the travel time for a photon in the arms of an interferometer
of length L. If we use the metric for the weak field:

ds? = —cdt® + (1 + hpy (20 ft — K - F)da®
+(1 = hpe (2 ft — k- Z)dy? + d2° (76)

we can think that we have a wave with a plus polarization traveling along the z direction: Then the proper
travel time for a photon traveling round trip on the arm of an interferometer of length L is, using the fact that

ds =0:

Tout 1 L
/ dt:—/ e
0 ¢ Jo

I | S
~ = / 14 —hee2nft — k- Z)dx (77)
c Jo 2

and

Tret 1 0 1 _—
dt = —— (l—l—ihm(%rft—k-w)dx

out ¢JL
oL 1 [E 1 -
=24 = | 14 Zhy(2nft—Fk-3)d
T= = +20 ; —1—2 2nf Z)dx
1 /0 1 I
% : (1+ ihm(%rft —k-Z)dx (78)
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If 27 f., < 1 the metric perturbation can be treated as constant during the time any given wavefront is in
the detector. Let’s assume h(t) = hexp(i27 fgut),

t/)wtdt=A9-+4—l347[eﬂ”EwL/C—»q
0 ¢ Amifaw ’

t gt = £ n h ei27rfgw2L/c |:1 _ e—i27rfgll,L/C:| , (79)
¢ Amifgw

Tout

Then the final 7 where sinc(z) = sin(x)/x is:

0T = hTtsinc(ﬂfngto)ei”fgw”"

0p(t) = hry ?smc(wfgwno)e”fgwm (80)

The purpose of the above calculation was to estimate the sensitivity and response of an interferometer to the
passage through it of a gravitational wave in the best possible conditions (i.e. perpendicular to the plane of
the detector). This gives us the transfer function of an interferometer, i.e. the frequency sensitivity for the
detector:

1.%x10% }
1.x10% } r'n
1.x10% §

20 50 100 200 S00 1000

Transfer function for an interferometer

The graph above shows the magnitude of d¢ as a function of the gravitational wave frequency (in H z in the
horizontal axis. The arms are at 1, 500km distance.The light wavelength is A = 0.5um. This a LogLogPlot
in Mathematica. The y axis is d¢/E/h.
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Slow motion wave generation

We will see that the lowest possible order of radiation originates in the temporal variation of mass dis-
tribution at the quadrupole level. We will assume that the field point & is in the radiation zone, far from the

source.
O = —gTH

We will assume that the field point Z is in the radiation zone, far from the source.

The field far from the source
The so called “retarded” solution (like in E&M) is:

BHv — K /THV(t — |7 - m/|’x/)d3x'

ar 17— 2|

You can compare with the analogous E&M treatment in books like Jackson’s using that

1)

(82)

V2(1/|Z — 2'|) = —4xd(Z — x') We assume that the field point  is in a region far from the source. So we
can replace |Z — 2’| in the denominator by |2’| in (57). We will assume that the time dependence is not very

strong, and then replace ¢ — |& — 2’| by ¢ — ||, and change our notation such that

r = |2/| and get:

W = —4—KT T (t — r,xj)d:g:c'
T

12
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Note: The condition for both assumptions above could be summarized: r < A and all the equivalent
conditions: fb/c < 1 or bA < 1, or v/c < 1, where f and A are the frequency and wavelength of the
radiation respectively. b is the typical dimension of the system. The Bianchi conditions obligate T*" to
satisfy:

™ ,=0 (84)
It can be written:
T ;= T T, = -, (85)

Using the first of equations (60) we can see that if we integrate by parts after taking a volume integral the
following identity can be derived:

%% /(Tkoxl + T2M) 32 =
1
-5 / (T2 + 9T =) dPx = / T @3y (86)

Working the same manner the second equation in (60):

/ (THOz! + TR B2 = % / TOxF 2l d3 % (87)
Combining (61) and (62) we find:
/ e =10 / Tz 2 dx (88)
2082
For slow motions of matter then we get:
T ~ p (89)
and we obtain applying our results to (58):
_ 92
R*U(t, Z) = — {” p(f’)z’kx'ld?’z’} (90)
8mr Ot? i
This integral can be written in terms of the quadrupole momentum tensor:
Qk}l — /(31,/]6‘,1:” *7‘/252),0(93_;)(1317/ (91)

This quadrupole momentum appears naturally when one performs a decomposition of the newtonian poten-
tial solution. ie. The well known solution is:

W
d(Z) = — Md%’ 92)
|7 — |
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When the point & is outside the region of the mass distribution, a multipole expansion can be done for the
potential. The solution after performing the integrals is:

. GM G G xFal
k Kl
where:
M= [ p(a’)d*s' (94)
DF = / % p(a)dPa’ (95)
QM = /(Sx'kx’l — 25 ) p(a")d> ! (96)
Using (71) in (65) we get:
_ 1[06? 0?
R ) = — {Q“ + 0L — / r/zp(f’)d?’x’] 97)
8mr 3 | 0t? k otz i

But the 52 term can never give a zero trace term according to what we learned about plane wave solutions.
The final solution is:

K }le

O

(98)
The monopole contribution to radiation does not appear due to the existence of only one type of mass and the
conservation of it when we include the rest energy. The dipole does not appear either due to the conservation
of momentum. So we found that the origin of gravitational radiation to lowest order is in the acceleration of
the quadrupole momentum. Notice that the quadrupole tensor of a spherical mass distribution is zero. I state
for completion but without proof the energy radiated by a gravitational source:

dE G
dt 4565

vkl kl
Q Q (99)
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