
Lesson 7
Weak fields

Mario Dı́az

1 Geometrized units
The units system where c = G = 1 is extremely useful and called geometrized units.

And the dimensionality can be compared like this:.
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The weak field limit
The discussion following is relevant as to what we should expect from so-called alternative theories of
gravity. The reality check we will always use is the low speed limit in which we know Newtonian physics
works with admirable precision. Far away enough from the source a gravitational field should be weak in
such a manner that the metric can be described:

gαβ = ηαβ + hαβ (1)

where |hαβ | � 1 everywhere, and ηαβ is the flat Minkowski metric. What we are actually saying is that
there exist coordinates in which the equation above is possible. And if this equation is true in one of these
systems, then there are many other coordinate systems in which this is true. A wise choice of coordinate
system is crucial.

2 Background Lorentz Transformations
The Lorentz transformations are:

Λᾱβ =


γ −vγ 0 0
−vγ γ 0 0

0 0 1 0
0 0 0 1

 , γ = (1− v2)−
1
2 (2)

A Lorentz transformation is one:

xᾱ = Λᾱβx
β (3)

Although we are not in SR, let’s see what happens to the metric:

gᾱβ̄ = ΛµᾱΛν β̄gµν (4)

= ΛµᾱΛν β̄ηµν + ΛµᾱΛν β̄hµν (5)

But by definition of Lorentz transformations:

ΛµᾱΛν β̄ηµν = ηᾱβ̄ (6)

So:

gᾱβ̄ = ηᾱβ̄ + hᾱβ̄ (7)

where:

hᾱβ̄ = ΛµᾱΛν β̄hµν (8)

which show that hµν transforms as if a tensor in SR itself. This property of the slightly ”curved” or modified
Minkowski will make it easier the calculations. All physical fields, including the Riemman tensor will be
written just in terms of it.
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3 Gauge transformations
A type of coordinates that leave equation (1) with the condition |hαβ | � 1 unchanged is a small change in
the coordinates of the form:

xα
′

= xα + ξα(xβ), (9)

We assume ξα is small in the sense that |ξα,β | � 1

Λα
′

β =
∂x′

∂xβ
= δαβ + ξα,β , (10)

Λαβ′ = δαβ − ξα,β +O(|ξα,β |2). (11)

To first order this gives:

gα′β′ = ηαβ + hαβ − ξα,β + ξβ,α, (12)

where:

ξα = ηαβξ
β (13)

The effect of this change of coordinates is to change hαβ :

hαβ → hαβ − ξα,β − ξβ,α, (14)

If |ξα,β | � 1 then the new hαβ is also small. A change like this is called: a gauge transformation. This
freedom of the Einstein’s theory is extremely useful and important.

The Riemann tensor:
Using (1) the calculation yields:

Rαβµν =
1

2
(hαν,βµ + hβµ,αν − hαµ,βν − hβν,αµ) (15)

The trick or magic: i.e. the fact that the Riemann tensor does not depend on the small quantities ξα,β is
precisely the fact that they are second order, and we don’t need to consider them at first order.

Weak-field Einstein equations
We will define

hµβ := ηµαhαβ , (16)

hµν := ηνβhµβ , (17)

the trace:

h := hαα (18)

and another tensor called the ”trace reverse” of hαβ

h̄αβ := hαβ − 1

2
ηαβh. (19)
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The trace is:

h̄ := h̄αα = hαβηβα −
1

2
ηαβηβαh = h− 4

2
h = −h (20)

and the inverse of (19) is the same equation:

hαβ = h̄αβ − 1

2
ηαβh̄. (21)

The Einstein tensor becomes:

Gαβ = −1

2
[h̄ ,µ
αβ,µ + ηαβh̄

,µν
µν − h̄ ,µ

αµ,β (22)

−h̄ ,µ
βµ,α +O(h2

αβ)]. (23)

The Lorentz gauge
Things would be simpler if we required:

h̄αβ,β = 0. (24)

Notice, that from the definition of h̄αβ in eq. (19), we get:

hαβ,β −
1

2
h,α = 0. (25)

We just need to choose coordinates where these equations, (24) and (25), would be satisfied.
Eq (24) is called the Lorentz gauge. Let’s assume we have an h̄αβ for which this does not hold. We look

for a new one:

h̄(new)
µν = h̄(old)

µν − ξµ,ν − ξν,µ + ηµνξ
α
,α (26)

The divergence of this new h̄
(new)
µν will be:

h̄(new)µν
,ν = h̄(old)µν

,ν − ξµ,ν,ν . (27)

But then all we need is:

�ξµ = ξµ,ν,ν = h̄(old)µν
,ν (28)

Notice that the � operator above is nothing else than the standard Laplacian operator minus the second time
derivative, i.e. for any function f :

�f = f ,µ ,µ =

(
− ∂2

∂t2
+∇2

)
f. (29)

The inhomogeneous form of this equation always have a solution provided the function that makes the
equation inhomogeneous is ”well behaved”. But the solution will be defined up to any other function η
which satisfies:

�ηµ = 0 (30)
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This function will of course satisfy equation (28). This procedure defines rather than a gauge, a class of
gauges. In this gauge:

Gαβ = −1

2
�h̄αβ (31)

And consequently the weak field Einstein equations become:

�h̄µν = −16πTµν (32)

These are also called the field equations in the ”linearized” theory.
But notice that in vacuum these equations are:

Gαβ = �h̄αβ = 0 (33)

But this means that if we assume a time dependence for the metric perturbation h̄αβ it does satisfy the
wave equation if its a solution of Einstein’s equations!

Newtonian limit
In the Newtonian case we expect |φ| � 1 and |v| � 1. This will also mean that |T 00| � |T 0i| � |T ij |

�h̄00 = −16πρ (34)

We will be working in what is called the slow-motion approximation we will assume for any function f:

v

c

∂f

∂xα
∼ ∂f

∂x0
(35)

In this limit we use also that T 00 = ρ+O(ρv2) and these two conditions lead to:

� = ∇2 +O
(

(
v

c
)2∇2

)
. (36)

and then our equation to lowest order:

∇2h̄00 = −16πρ (37)

where we can compare with Newton’s equation:

∇2φ = 4πρ (38)

where we take G = 1.
We need to identify then:

h̄00 = −4φ (39)

We will consider all other components of h̄αβ ∼ 0 so we will have:

h = hαα = −h̄αα = h̄00 (40)

And then

h00 = −2φ (41)
hxx = hyy = hzz = −2φ (42)

and:

ds2 = −(1 + 2φ)dt2 + (1− 2φ)(dx2 + dy2 + dz2). (43)
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4 Far field of stationary sources
Care should be taken when trying to identify (31) with the gravitational field far from the source. Notice that
if we are far from the source the metric has to be a solution of the vacuum Einstein’s field equations. So in
these terms it would an affirmation incompatible with equation (31).

An asymptotically flat spacetime is a Lorentzian manifold in which, the curvature becomes negligible
or directly vanishes at large distances from some region, so that at large distances, the geometry becomes
indistinguishable from that of Minkowski spacetime. For completeness, a coordinate dependent definition
of ”asymptotic flatness”: It’s one with gαβ = ηαβ + hαβ such if r2 = x2 + y2 + z2 hαβ behaves:

lim
r→∞

hαβ = O(1/r)

lim
r→∞

hαβ,µ = O(1/r2)

lim
r→∞

hαβ,µν = O(1/r3)

But to identify (31) with a general field far from the source you have to follow the discussion in Schutz
which I will not repeat here. But in conclusion, considering that far from the source the potential is:

φfar field = −M/r +O(r2) (44)

we can redefine (34) with this potential and we have:

ds2 = −(1− 2M/r)dt2 +O(r−2)(dx2 + dy2 + dz2). (45)

5 The Weyl tensor
The Weyl tensor is a tensor associated with the Riemman tensor that could be quite useful. In 4 dimensions
the Riemman tensor has twenty independent components. Ten are actually given by Rab; the other ten by
the Weyl tensor, which is defined in n dimensions:

Cabcd = Rabcd +
1

n− 2
(gadRcb + gbcRda − gacRdb−

gbdRca) +
1

(n− 1)(n− 2)
(gacgdb − gadgcb)R

So in four dimensions which is the main interest of this course:

Cabcd = Rabcd +
1

2
(gadRcb + gbcRda − gacRdb

− gbdRca) +
1

6
(gacgdb − gadgcb)R (44)

It has the same symmetries that the Riemman tensor has:

Cabcd = −Cadbc = −Cbacd = Ccdab

Cabcd + Cadbc + Cacdb ≡ 0 (45)

but it also has an additional symmetry:

Cabad ≡ 0 (46)

The Weyl tensor is trace free.
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6 Conformal metrics
Two metrics are said to be conformally related if:

ḡab = Ω2gab (47)

where Ω is non zero differentiable function of the coordinates. In such geometries angles between vectors
and ratio of magnitudes between vectors are the same for each metric. Also the null geodesics coincide.
Additionally they have the same Weyl tensor:

C̄abcd = Cabcd (48)

Any quantity which satisfies relationships like (47) are called conformally invariant. A metric is said to be
conformally flat if it can be reduced to:

gab = Ω2ηab (49)

where ηab is the flat metric.
The following are two important Theorems for which we will state the results only:

Theorem I

A necessary and sufficient condition for a metric to be conformally flat is that its Weyl tensor vanishes
everywhere.

Theorem II

Any two dimensional Riemmanian manifold is conformally flat.

7 The Newtonian limit of non-Einstein theories
A metric theory (devised by Nordstrom in 1913) relates gµν and Tµν by:

Cµνρσ = 0

R = κgµνT
µν (50)

where C is the Weyl tensor. We will show that this theory, in the proper Newtonian limit and with the proper
choice of κ, agrees with Newtonian gravitation theory, but predicts no deflection of starlight passing near
the Sun. We can, due to the vanishing of the Weyl tensor write the metric:

gµν = e2φηµν (51)

where φ� 1 in the Newtonian limit.
It can be proven that for general metrics like (51) the Ricci scalar is:

R = Rµµ = e2φηµνRµν = −6e−2φ[∇2φ+ (∇φ)2] (52)
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Then:

R ≈ −6∇2φ (53)

For low speeds Tµµ ≈ T 0
0 ≈ −ρ and the field equations become:

−6∇2φ,αβη
αβ = κT = −κρ (54)

Time variations will be slow compared to space variations at low speeds:

6∇2φ,ijδ
ij = κT = κρ (55)

For κ = 24π these are the Newton equations.
For the Newtonian limit (55) gives

g00 = −(1 + 2φ)

This means that the trajectories are geodesics of the metric.
We could see that the null geodesics for metric (51) are the same null geodesics of the Minkowski metric.
This means that far from the source we will see no deflection near the a massive object.

Regarding another predicted effect of Einstein’s theory, the Pound-Rebka experiment of the gravitational
redshift:
Near the Earth’s surface the metric is of the form,

ds2 = e2φ(z)(−dt2 + dx2 + dy2 + dz2) (56)

For particles to fall the known acceleration we need to have φ ≈ −gz From the geodesic equation we find
that for the energy of a photon moving vertically

dp0

dz
= −Γ 0

0zp
0 = −φ,zp0 (57)

So the photon will loose energy and the theory predicts a gravitational redshift.
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