Lesson 1 - 2025
Cosmology
or The Natural History of Everything

Mario Diaz

May 6, 2025

What is Cosmology?

most of the material follows d’Inverno’s ”Introducing Einstein’s Relativity”, although I kept the signa-
ture we have used throughout the course and not the one the author utilizes in his book.
I follow Schutz in discussing luminosity distance and the expansion of the universe. Similarly when I intro-
duce dark energy. The layout for this part of the course will follow the discussion of the following issues or
questions.

* How does everything fit together?
* Olbers paradox

* Newtonian Cosmology

* The Cosmological Principle

* Weyl’s postulate

* Relativistic Cosmology



The ancient world of the Westerners



The Cosmos according to the Incas



An according to the Mayans
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The world for the Ancient Hindus



THE ANCIENT HEBREW CONCEPTION
OF THE UNIVERSE

10 ILLUSTRATE THE ACCCUMNT OF CREATION AND THE FLOOD

The world for the Ancient Hebrew

Olbers’ paradox
In 1826 Olbers postulated his famous paradox:

* How come the sky is so dark if it’s filled with stars in an infinite universe?

It is not difficult to see that if we look at the center of a shell of radius r with a total luminosity ! provided
by the average luminosity of the stars contained multiplied by the number of stars inside this volume the
intensity of the light produced at the center of the shell will be this total luminosity divided by the area of it,
ie.

(47r2dr)l
——=1d 1
47r? " M
We clearly get the total intensity at P by integrating over all the shells around P up to infinity:
/ ldr = oo! 2)
0

But the sky is dark at night! The paradox is that a static, infinitely old universe with an infinite number
of stars distributed in an infinitely large space would be bright rather than dark. We could have taken
into consideration: Absorption of light by stars in the line of sight. Olbers postulated the existence of a



tenuous gas which would absorb the radiation (this is an inconsistent argument from the point of view of
Thermodynamics). The expansion of the Universe would definitely be able to provide an explanation for the
paradox. For a more complete explanation of the paradox and interesting alternative resolutions see:
http : / /en.wikipedia.org/wiki/Olbers’ paradox (excellent account, including historical precedents).
The Homogeneous Isotropic Cosmological Model
At any given instant of time:

* Homogeneity: At different space points all observable quantities are the same. This means no matter
which region we look at they all look similar at a given scale. We find the same proportion of spiral
galaxies, elliptical galaxies, irregular galaxies. The clustering of galaxies at larger scales is observed
to be distributed equally along the universe. No preferred point or location in space.

* Isotropy: At any space point all directions are equivalent. No special vantage point. No rotation (that
would indicate an axis and then a preferred direction).

We could investigate:
* Relativistic models (i.e. using the general theory of relativity).

* Newtonian gravity.

The APM Galaxy Survey

Maddox et al

Galaxy Survey 30° across with a million galaxies up to a distance of 2 billion light years.

Newtonian Cosmology



* A spherically symmetric distribution of matter does not give rise to a gravitational force inside a
spherical cavity concentric to the matter distribution.

* We can assume a distribution of velocities for the particles that make up this fluid: v = Hr

Edwin Hubble discovered his law when studying distance to galaxies and their spectra redshift in 1929

Features of our model:
* The matter at the origin of the coordinate system is at rest.
* Only the assumed type of velocity distribution is isotropic and homogeneous.

* An observer moving along with the particles sees all neighboring particles receding.

Evolution of the model:

dr
v=Hr E_HT 3

rap(t) = TAB(to)eftto H(t)dt

“

Density evolution



Let’s assume a mass M ,volume of radius R, then:

M A M
P= 4/3mr3 dt — 4/3nrd dt
And if we substitute:
dr/dt =v = Hr
dp —3M
— = Hr =-3pH
dt ~ 4/3mrr P
And we have:
dp
— = —3pH
dt r
How does the velocity change?
We now will use Newton’s gravity:
@_a__GM __G%Wpr3 4 Cor
a2z 2 3P
How do H and p evolve?
Using (6), p = 4/3% and a = % we get:
d*r  d dH dr dH
—=—Hr)=—r+H—=r—+HH
g2 = g = gy gy =gy T AT
From where we have:
dH 4
— =—-H?*- -7G
dt 37 P
dp
— = —3pH
dt r

Egs (11) and (12) form a complete system of equations.
We can now multiply (9) by %

d?r dr GM dr

ez dt 2 dt

d, o o d(1
dt(r)_GMdt<r)

which yields:
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dt |2 r
1 GM
5(1’"2) - = constant
We can calculate the constant at t = ¢
1
A= §(H333) — 37Gpo Ry
and using
4
dr\? 8 R} 8
— ) = -nGpp—2 — 7GR}
(dt) 3T T e O(p
where we can define a critical density:
3H?
Pe= g~
8rG

R} 8

dr\?> 8 2 )
a ) = g”GPOT - gWGRo (po — pe)

Now we can do a qualitative analysis:
o dr/dt >0

* rincreases with time

el

s5)

(16)

a7

(18)

19)

(20)

2y

3
Then in the past %wG p(,% was larger and also % was large. So in the past should have been a time when

_)
e r=20
dr __
. E — +OO
This is the Big Bang!

But the future depends on (p — pe).
We can write (21) defining two arbitrary constants:

(Z)z = E—C(Po—Pc)

r

As R grows: If pg > p.
and r is very small but 1/r grows until

C(po — po)
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(23)



And then dr/dt = 0 and the expansion stops!. But if pg < p.
dr/dt > 0 and the expansion continues forever!

dr 1
2= 1C(pe — po)]? 24
@ = (o~ po)] 4
And then if pg = p.
dr\*> B
@) =2 N = Dt?/3 2
( dt) : r(t) = Dt )

Relativistic Cosmology
Three postulates are the basis of RC:

* the cosmological principle: on large scale the universe looks the same to any observer (the universal
Copernican Principle).

* Weyl’s postulate: the universe can be represented by a perfect fluid, where the particles of the fluid are
the galaxies.

* general relativity

Weyl’s postulate can be expressed mathematically saying that there is a time, i.e. the proper time co-
moving with the galaxies. i.e. the galaxies move on time-like geodesics defining orthogonal hypersurfaces
of constant coordinates. This orthogonality can be expressed:

ds® = dt* — h;jdz'dz’ (26)

t is the cosmic time. The world map is the series of events on the surfaces of simultaneity (same t). The
world picture is the set of events an observer sees in her past light cone at a given cosmic time. Due to
the fact that we require isotropy and homogeneity we need to require that the spatial part of the metric be
conformal in time, i.e. that the metric is multiply by an overall factor depending of time:

The ratio of two values of S at different times is the magnification factor (scale factor). We will also require
that the curvature at each point be constant, i.e. given a time slice the curvature of the surface has to be
constant otherwise the isotropy and homogeneity will be lost. It can be shown that spaces of constant
curvature are defined:

Rabcd = K(gacgbd - gadgbc)a (28)

where K is the constant curvature. Since the 3-space is isotropic about every point, it must be spherically
symmetric. We can use the 3-space metric defined from (21) and (22) in Lesson 11:

do? = gyda'da? = e rdr® + r2dQ?, (29)
where A = A(r). The non-vanishing components of the Rlcci tensor are:
R11 = /\//’/‘, R22 = 8086629R33, (30)

1
Ris =1+ ire—w —e N (31)
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Condition (28) yields:
N/r=2Ke* 1+ %re*W —e N =2K7r?. (32)
The solutions is:
e =1-Kr% (33)

This gives us the metric for the 3-space of constant curvature:

do? = 722 (34)
C1-Kr? ’
It is more convenient to define:
77
= 35
ETEY ©33)
and the metric becomes:
1
do® = (1+ K)72 [dr* +72dQ7], (36)
Combining with (27):
dr? + 72 d?

ds* = —dt* + S*(t) (37

(14 1K72)2’

And one more effort: it is convenient to leave only the sign of the K (which is a scale factor) as a physically
relevant parameter: If K # 0 we can define k = K/ K||. If we define also r* = || K ||*/?r we would get:

2 t %2
i = a0 ([ R s 0 @)
- T

and defining a rescaled scaled function as well:

R(t) = S(t)/||IK|"/? if K #0, (39)
R(t) = S(t) if K=0 (40)

we get after dropping the stars, finally!:

2
2 32 2 2 102
ds® = —dt +R(t)<1_kr2+r dQ> 41)
or in the 7 coordinate:
dr? + 72d0?
ds? = —at* + R T 42)

1t 1K)’

where k = +1,—1,0.
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(41) is called the Robertson-Walker metric.

The associated geometries

k=+1

We see in (41) that the coefficient of dr? becomes singular as r — 1. We can go around with:

r =siny, (43)
and,
dr = cos xdx = (1 — r2)1/2dx, 44)
and the 3-d part becomes:
do® = Rj (dx® + sin® xdQ?) (45)

But now we can embed this 3-surface in a 4-dimensional Euclidean space (w, x, y, z) where

w = Ry cosx,

x = Ry sin x sin 6 cos ¢,

e (46)
y = Ry sin x sin 6 sin ¢,
z = Ry sin x cos 6.
Now trivially:
do? = dw? + daz? + dy? + dz? = Rg (dx2 + sin? XdQQ) , 47

which is in agreement with (44).

13



< CosmicTime

N\

Spatial Slice S3

The topology with k=+1

k = 0 If we look at (41) at a given time ¢t = %, the spatial part of the metric can become with the
following coordinate choice:
x = Rysin 6 cos ¢,

y = Ry sin @ sin ¢, (48)
z = Rycosd.
Then the metric becomes
do? = dx® + dy* + d2?, (49)
And the topology is the same as the k = +1 case.
k=-1
We can introduce a new coordinate = sinh x and then,
dr = cosh xdx = (1 +r2)'/2dr, (50)

SO

do? = R} (dx* + sinh® xd0?) (51)
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Notice that now we can embed this 3-surface in a a flat Minkowski space

do? = —dw? + da? + dy? + dz?, (52)
with the coordinates defined:
w = Ry cosh x,
x = Ry sinh x sin # cos ¢,
osmixsinfcos o (53)
y = Ry sinh y sin # sin ¢,

z = Rpsinh x cos 6.
The equations imply that:

—w? a2t +y? 422 = Rg 54)

so the 3-surface is a three dimensional hyperboloid in four dimensional Minkowkski space.

E:

I

L—— S? Y=constant

v

The topology with k=-1
The 2-surfaces in the picture are 2-spheres of surface area:

A, = 47 R2sinh* x

x ranges from 0 — oo The 3-volume can become infinite.

15



Friedmann’s equation
We will now work to develop relativistic cosmological models. We need:

¢ the FRW metric
2

d
ds® = —dt* + R*(1) (1 ——+ r2d92> (55)

* Weyl’s postulate
T;w = (P +p)u,uuu — PYuv (56)
* Einstein’s cosmological eqs:

G — Mgy =811, 57

Then using that in our comoving coordinate system @ = (1,0, 0, 0), the field equations become,

R? +k
Lo
2RE+ R*+k A = —8mp, (39)

R2
Due to considerations of isotropy and homogeneity p and 7 can be only functions of time.

Differentiating (57) respect to time, multiply by 1/87 and add the result to (58) multiplied by 73R/ 8TR
we get:

R 3R (3R% 3k R
+3p==——"-=| =+ = —A| =-3p= 60
PTPR 87rR<R2+R2 > PR (60)
Multiplying by R? we can rewrite this:
d d
i PR+ (77) =0 o

But R3(t) is the volume of the fluid we are considering V. And pV the total mass-energy in the volume V.
But then we can rewrite (60),

dE +pdV =0 (62)

Notice that this is the law of conservation of energy. This is the result of satisfying the Bianchi identities.
But if we consider experimental evidence, p/p < 107%, so we can assume p = 0. In that case (58) integrates
immediately. First we need to multiply it by R throughout, and then identify that the left hand side is a total
time derivative of the expression

. 1
R(R+ k) — gAR3 =C (63)
with C' a constant of integration, which can be quickly identified using (57) as
8
0= Snrp (64)
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This is twice the mass content of a spherical volume of a Euclidean universe of radius R and density p. But
we can use (63) now to eliminate p in (57):
. c 1
R*=—+ _AR*—k 65
713 (65)

I will call R, which some authors call the scale factor, the “radius of the Universe”. (64) is called the
Friedmann’s equation. Compare (64) with (21)! The only difference is the cosmological constant term.
Notice that in the Newtonian derivation we were looking at an expanding fluid with zero pressure.

Propagation of light

An observer sees light from a galaxy (which is receding). A radial null geodesic will have:

ds®> =df =d¢p =0 (66)
So using (41) we get

dt dr
=+ 67
RO (1= k) ©n

We can think of a time ¢; at which the observer is receiving light from a galaxy situated at a point with
r = r1 and emitted at time ¢1. Then

o _dt 0 dr
/tl R(t):_/m(l—kr?)%:f(”)’ 68)

where,

sin"l'r ifk =41,
flri)=<r if k=0,
sinh~'ry ifk=—1.
Let’s consider now two successive rays of light which are emitted by the galaxy at times ¢; and ¢; + dt
which are received by our observer at times ¢y and ¢y + dty. Following (67) we see that even if we calculate

the left hand side for different intervals of time it will still be a function only of the position of the galaxy
respect to the observer (i.e. r1):

fokdto gy foqt
Y S = f(r), (69)
/tl +dtq R(t) /t'l R(t)
and then:
fotdto gy fo gt
/ - / =0, (70)
t14dt1 R(t) t1 R(t)
to+dto dt t1+dty dt
P [
o R(t) R(t)
If R(t) doesn’t vary much over dt; and dty we get:
dto dty

- . (72)
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The galaxies move along world lines on which the coordinates , 8, ¢ are constant.

Consequently, ds? = dt? which implies that ¢ measures the proper time along the fluid particles (galaxies)
world lines. dt; and dt are the proper time intervals between the two light rays emitted by the galaxy and
perceived by the observer. This means according to (71) that the time interval measured by the observer is
R(to)/R(t1) times the time interval measured by someone at the emitter galaxy. The universe is expanding,
so to > t1 which implies R(¢o) > R(t1). This implies that the observer O will perceive a redshift z given
by

141 R(to)

1+Z:170:R(t1)' (73)

where v and vy are the frequencies measured by the emitter and the receiver. This the cosmological redshift.
For short time differences ¢ty = t1 + dt and so (72) will become:

141 R(to) -~ R(to)

l+z2=—= o~ - (74)
vo  R(to—dt)  R(ty) — Ry,dt
R(to)
~1+ dt 75
Rlto) (75)
If we integrate,
to t1+dt
[ 6
n B Sy RE)  R(t)
dt dt
~ 77
R(to —dt)  R(to) 7
In the case of small r, we get from f(r) as defined in (67) and the formula below,
o dt
—— = f(r1) =, (78)
==
So we can write now:
dt
~ 79
R(to) 1 (79)
And from (74)
z~ R(to)r, (80)

Distance in Cosmology
An easy way to measure distance is to use the world time and measure the distance (absolute at the same

time on a given slice) between particles by just measuring the proper distance along a geodesic line.
We set dt = df = d¢ = 0 in (41). Then,

71 d
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But we would need to know R;.
Because what we know it is the apparent luminosity of the particle, i.e. the galaxy or nebula, we may try it.
If E is the total luminous energy radiated per unit of time by the galaxy, and I the intensity of the radiation
measured by the observer per unit of area and time.

Cosmological distance

We can define the distance as (E/4mI)'/2. There is an issue with the time though. We need to account for
the Doppler shift of the light (a result of the expanding universe!) so the number of photons will be reduced
but also their energy (frequency) will be reduced. So the redshift factor enters twice! and we have:

9 E

L= ArI(1+ z)?

(82)
This is called the luminosity distance. This formula is just an approximation. The main problem is that we
can not measure in general E.

A digression on measuring distance to the stars

In 1912 Henrietta Leavitt found the following relationship between absolute magnitude and the period
of variable stars called Cepheids:

M = —2.78log P — 1.35 (83)
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Cepheid stars in M100

13.50
13.75
14.00

14.25

1650

[ 1 [ 1 -

1 2 3 4 5 ] 7 8 a9
Time (days)

Light curve for a cepheid.

The apparent magnitude is related to the absolute magnitude (or energy emitted) and can be related to the
energy received (which is itself related to the distance to the source by (74).
The relationship between the apparent magnitude and the energy received is given by:

m = constant — 0.41og,¢ Er. (84)
In a similar manner distances can be inferred from luminosity measurements of nearby galaxies,
L =4nd®F

where d is the distance to the galaxy and F' is the flux we measure. From this we can define the luminosity

distance 1o
L
dr, = | —
4 F

What is the relationship between the luminosity distance and the cosmological scales? Suppose that our
source gives only one type of photons of frequency v, at time ¢, What is the flux at a later time £,? In an

20



interval dt, the source emits:
N = Lote/hv,

To find the flux we need to know the area of the sphere that these photons occupy at the time we observe
them.
Integrating over the spherical angles using (54) we get:

A =47 Ry*r?
but the photons have redshifted by 1 + z = Ry/R(t.) to a frequency vg:
hvy = hve /(1 + 2)

They would arrive during a time 0t
St = te(1 + 2)

The flux of light at time ¢ is then Nhvg/(Adt), and then,
F=L/A1+2)?

Then the luminosity distance dy, is,
dy, = Ro’l“(l + Z)

To get the final formula we need to have the value of r as a function of the redshift z. All we need to do is

to set ds = 0 in (54) which gives us
dr dt

(1—kr2)1/2 ~  R(t)

Hubble’s law

If light coming from P; at time ¢; is observed “now” by an observer at O at time to where ¢; < %, the
light will be extended over a sphere with centre at Py where ¢t = ¢y and » = 71 and passing through Oy with
t =ty and r = 0. The surface area of the sphere centered at Oy is the same as the one centered at Py. We
have to remember that the 3-sphere is homogeneous. From (41) the line element of the 3-sphere is:

ds®> = [R(to)r1]?(d6* + sin® 0d¢?), (85)
The integration of d2? will give the sphere with surface 47 R?(to)r? and consequently the observed

intensity for the galaxy’s light emitted at P; is
E

1= 86
4mr2 R2(to) (1 + 2)2’ (86)
Comparing with (81) we get:

dL = TlR(to). (87)

If we define the Hubble parameter

R(t)

H(t) = == 88
=T (58)
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the we have
z ~ H(ty)dr, (89)

Hj is the value of the Hubble parameter at the current epoch an is called the Hubble constant.

The sphere of light from P; at Oy

According to the WMAP results the most current value of the Hubble’s constant is 73.5 & 3.2 km/sec/Mpc.
This is Hy = 2.3 x 10718 1/sec.

The Hubble time is T = 1/Hy = 4.35 x 10'7 sec. The velocity of recession of galaxies as measured by
their redshift is proportional to its distance. The deceleration parameter g is

RR
R2
q measures the rate at which the expansion of the universe is slowing down. Current estimates get a negative

value, meaning the universe expansion is not subduing but increasing. From (74) we can include second
order effects into account and find that:

q(t) = (90)

di = 2Tyl = S(1+ o)+ ] 1)
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(88) is fine for nearby galaxies. But beyond 18th magnitude (90) has to be used. Notice that this latter one
is a function of ¢q.
Differentiating (64)

D c . 2 )
2RR=——R+ -ARR 92
Falt+ SARR, 92)

and multiplying by — R/ 2R3 we get,
.. | R
AR € LB 93)
R? 2RR?2 3 R?
Then from (89), (63) and (87) we get:

4 1
q= <37Tp - 3/\) /H? (94)

Another important observable is N, the number of galaxies in a given volume. The volume is given by:

T1 2
B 3 rdr
V =4rR (to)/o 7(1 ~ )i 95)

The number of galaxies in this volume is

Is this number constant? We need a theory of galactic evolution. H,q,p and N play a crucial role in
determining different models and possible evolutions for our universe.

We can go back to
dr dt

(1—Fkr2)1/2 ~  R(t)

and we see that we can now put

dr dt dz

(1— k)12~  R(t) RoH(z)’

after using that H = % and also eq (72)

14+2z=

And integrating assuming small r and z and working only to first order beyond the Euclidean relations:

1 H,
dL:ROT(1+Z):(_EZf0> 1+<1+21{02>Z
0

If we can measure the luminosity distances and redshifts of a number of objects, then we can measure Ho.
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The Universe is accelerating

The way this is observed is by doing a plot of the luminosity distance against redshift for Type Ia super-
novae.

These occur occur in binary systems in which one of the stars is a white dwarf while the other can vary
from a giant star to an even smaller white dwarf.

This category of supernovae produces a consistent peak luminosity because of the uniform mass of white
dwarfs that explode via the accretion mechanism (carbon-oxygen white dwarfs with a low rate of rotation
are limited to below 1.38 solar masses).

The stability of this value allows these explosions to be used as standard candles to measure the distance
to their host galaxies because the visual magnitude of the supernovae depends primarily on the distance.

44
#High-Z SN Search Team
42+ e Supernova Cosmology Project
[=] r
o] 40 L
E [ v ]
s 38 3 ]
> i?.’ - — 0,=0.3,0,=0.7 ]
€ a6f 5 55 ]
[ K& — ,=03,0,=00 7]
[ £ ]
[ _a _ . ]
34__ /_.45! --4{3~1.0,0=0.0 .
L2 ' '
T

} t
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0.01 0.10 1.00

Lg vs z for Type Ia supernovae

Cosmological models

Flat case k =0
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In this case we get:
. 1
R*=C/R+ gAR2.

We assume A > 0 and introduce a new variable wu:

2A

= PR3
Y730
Differentiating,
2A .
1= —R’R
w c ,
and substituting in (97)
4A2 cC 1
(2 _ 2R pa (2 I AR?
] o2 R (R + 3 R
4A2 3 4A3 6
= o et
— 6Au + 3Au>
= 3A(2u + u?).

or,

i = (3A)2 (2u + u?)>.

This equation can be integrated by parts...
Assuming R = 0 when ¢ = 0, then v = 0 and we have,

2u + u?

“ du _ ! 1/2 7, _ 1/2
/0 : Y /0 (30)1/2dt = (30)1/21.

Completing squares and making v = u + 1 and coshw = v

/“ du _ /” sinh wdw
o [(u+1)2—1]2 1 (cosh?w — 1)1/2

w
0

And going back to R,

3C
3 _ oY 1/2,
R o cosh(3A)™=t 1} .
If A < 0 we can introduce:
2A
=——R®
Y 3C

o7

(98)

99)

(100)

(101)

(102)
(103)

(104)

(105)

(106)

(107)

(108)

(109)



and then we can get,

IfA=0

Direct integration gives,

The deceleration parameter is:

At the beginning of the expanding universe, R is small and C'/ R dominates. So for small ¢

integrating,

_ 9 2%
ne (o).

This is the Einstein-de Sitter model. The Hubble parameter is:

H(t) = R/R = 2/(3t).

q(t) = —RR/R? =

R? ~ C/R,

1

9 5\°

In early stages all models regardless of the value of A expand like t2/3

Models with vanishing cosmological constant

We consider two cases k = +1 and k = —1 k=+1 (116) becomes

We define:

R?=C/R -k,

R*=C/R-1,

u? = R/C,

26

1

2

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)
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And then 2ut = R/ C, and substituting in (116):

R? 1 [/C 1 1
-2
— - Z 1) = — -1 120
YT icr? T 1o (R ) 4C%u? (u2 > (120)
The equation is separable if we take positive square roots,
v u? 1 /[t t
2 —du=— [ dt=— (121)
A (1 — UQ)% C 0 C

We can evaluate the u—integral, we make u = sinf.

v u? 9 sin20cos0do
2 ——du=2 —_—— = 122
/0 (1—u2)2 b /0 (1 — sin20)1/2 (122)
sin"'u — u(1 — u?)/? (123)
which back to R yields,

Clsin™'(R/C)Y? — (R/C)/2(1 — R/C)Y?| =1t. (124)

In the case k=-1 we get...
Cl(R/C)Y?(1+ R/C)Y/? — sinh ' (R/C)Y?] = t. (125)

The case A = 0, k = 0 is the Einstein-de Sitter model of eq (115) The Hubble and deceleration parameters
are,

H=C"YR/C)%?*1-R/C)'/? (126)
1 -1
¢=5(1-R/C) (127)

where R is a function qf (t) implicitly from (123).
We can write (117) as R? = G(R), and then we get

G(R)=C/R—k, (128)

We can see that K = +1 has a loca_ll minimum, while the other models grow without bound.
Ifk=—1,and t — oo we’ll get R ~ 1, and then R ~ ¢.
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Friedmann models

Friedman-Robertson Walker universes

Using (54) and assuming that the matter content is a perfect fluid, we can look at T#”.,, = 0. The only
non trivial component is ;. = 0 and we get:

d 3 d 3
= (pR*) = —p— (R?) (129)
where R(t) is the cosmological expansion factor. R? is proportional to the volume of the fluid and then

the left hand of (128) is the rate of change of energy, and the right hand is the work it does as it expands

(—pdV).
In a matter dominated universe we have p = 0 and then
d
— (pR3®) =0 130
7 (PR (130)
In a radiation dominated era, p = % p
d 1 d
Z(pR3) = —Zp— (R3 131
g PI) = =505 (1F) (130
or
d
— (pR?*) =0 132
7 (PR’) (132)




In Einstein’s els the only two components non zero are G and G,.., so only one component survives (due
to Bianchi’s identities):

Gy = 3(§)2+3k/R2 (133)
So besides (129) or (131) we have Einstein’s eq with a cosmological constant A
Gt + Agyy = 8l (134)
We can think then of A as the energy density and pressure of a fluid
pr=A/87,  pr=-—pa (135)

pa is called the dark energy.
Then Einstein’s eqs can be written,

1o 1 4 5
5B = =5k + SR (pm + pa) (136)
From (128) and the time derivative of (135) we get

R 4
= 3 137
7 3 (p+ 3p), (137)

where p and p are the total energy and density pressure for both matter and dark energy.
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Thermodynamics in Cosmology

The evolution of matter, radiation and even vacuum is contained in the behavior of R as a function of
time ¢. This is one of the key features of an homogeneous model of the universe.

For any change d(AV') in a volume AV a change in the energy of the universe is given by:
d(AE) = —pd(AV) (138)
where
AE = pAV (139)

and p is the energy density. Az, Ay, Az define a volume where the number of particles (galaxies) remain
fixed due to the fact that we are utilizing comoving coordinates. But AV, ,,.q = Ax x Ay x Az is not the
physical size of the volume. This can be calculated explicitly using

dV = /gdx'da?dz® (140)
and
ds* = R%(t)(d2? + dy? + dz?) (141)
from where we obtain
AV = R} () AV,p0ra (142)

Using this last formula in (138) and dividing by dt we get

d - d, .
%(pRSAVcoord) = _p@(RSA‘/coord) (143)

But )AV_0rq is independent of time (comoving system of coordinates), and then

S OF0) = —plt) 5 (F() (144)

This is the First Law of Thermodynamics for a homogeneous isotropic cosmology. We can investigate how
it applies for the three kinds of energy we consider in a FRW model. We will assume that it applies to each
form separately.

Matter

We can assume that matter in galaxies can be assumed as a pressure-less gas. Then (144) becomes

d

S (PmOR (1)) = 0 (145)

which shows the conservation of mass and as a consequence a time evolution:
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3
& plt) = pun(to) (112((’5;’))) (146)

The time evolution of the matter density is entirely determined by the scale factor of the universe.
Radiation

For a gas of blackbody radiation at temperature 7 its energy and pressure are:

1
.= —pp 147
p 3P (147)

and the energy density

7T'2 (k‘BT)4
Pr =955 3
30 (he)

(148)

where kg is the Boltzmann’s constant (kg = 1.38 x 1016 erg/K) and g is the number of degrees of
freedom of the massless particles making up the radiation. g = 2 for photons (2 polarizations). For the case
of neutrinos g ~ 3.4 when including the three species and for kT <~ 1MeV which we can use here.
Using (147) in (144 ) we get after integration

pr(t) = pr(to) (];(Z f)) > (149)
or following (148)
T(t) = T(to) <};(§f))) (150)

We can see that the time dependence of the radiation energy density and its temperature are determined by
the scale factor. Temperature is inversely proportional to the scale factor.

Many large scale properties of the matter in the universe, for example the primordial abundance of the ele-
ments, can be understood as determined by the cool down from an initial thermal equilibrium at very high
temperature.

Matter dominates radiation now, but the opposite was true in the early universe. For any density value at
the current time there was an earlier value when R(t) was smaller and p,. bigger than p,,. At that moment
the universe was radiation dominated. There are roughly 10! galaxies in the portion of the universe that is
accesible to observations today. This would correspond to a density of approximately

puisivie(to) ~ 10731 g/em?. (151)
The density of the cosmic background radiation with a temperature of 2.725K is

pr(to) ~10~%*g/cm?. (152)
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From (146) and (149) then the universe was radiation dominated when
R(to)/R(t) ~ 103 (153)
i.e. when the universe was 1/1000 its current size.

Vacuum

Let’s concentrate on a vacuum energy that is (i) constant in space and time, and (ii) positive as indicated
by present observations. The first law of thermodynamics implies that

Pv = =P (154)

(a negative pressure is like tension in a rubber band: it requires work to expand the volume rather than work
to compress it). For historical reasons:

A

e

(155)

where A is the cosmological constant and has dimensions of a inverse square length. The long term evolution
our universe seems to be dominated by the vacuum energy.

Evolution of flat FRW models

The Friedman equation for a flat universe (k = 0) is:

. 8
jra. %RQ =0 (156)
This can be thought as a balance of the potential energy of gravitational self-attraction by the kinetic
energy of the expansion of a flat FRW universe. If we divide it by R?(#) we can obtain an equation relating
the Hubble constant today to the current density of the universe:

8
Hg . 7;PO

=0 (157)
The present density of a flat FRW model is called the critical density and has the value

Derit = f’%& = 1.88 x 107 *h%g/cm? (158)
where h = Hy/[(km/s)/Mpc] = .7 £ .1.

This total density can be thought of made up of the densities of all matter, radiation and vacuum energies.
The relative fractions are customarily written:

pulto) o _pelte) o palto) (159)

Perit Perit Perit

O,




where Q,,, + Q,. + Qa = 1 for these flat models.

It is also clear that (156) determines R(t) only up to a multiplicative constant. For what it follows we
will normalize R(ty) = 1. With this normalization we get

Qn Q.
P(R) = Pcrit (QA + ﬁ + R4> s (160)

Notice that although this can be calculated when R(¢y) = 1, it is valid for all times due to the functional
behavior of the different densities as powers of R. Then we can write (156) as

b

TE R?+U.;4(R) =0 (161)
0
where U, s (R) is given by
1 Q Q
= [ QuR*+ 2 + 2 162
Uer(R) 2(AR+R+R2>’ (162)

This is in many regards an energy conservation equation.
Solving it to study the evolution of the flat FRW model for each energy content gives:

e Matter dominated: §2,,, = 1,9, = 0,2 =0:

£\ 2/3
R(t) = () , (163)
to
e Radiation dominated: €2,,, = 0,Q,. =1,Q4 = 0:
£\ 12
R(t) = () ) (164)
to
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The effective potential U, s for a FRW model with equal amounts €,,, = €2, = Qa = 1/3. The universe
starts with a big bang at r = 0, decelerates until » ~ 1 (today) and then accelerates for ever, when it
becomes vacuum dominated.

e Vacuum dominated: 2,, =0,Q, =0,Q = 1:
R(t) = Mli=to), (165)

where H? = 8”% = % In all three cases the universe expands as time increases. In the radiation and
matter dominated cases, the universe begins with a singularity (R = 0 at ¢ = 0). Notice that this is a
physical singularity: the density energy a physical quantity becomes infinity at ¢ = 0. In the vacuum
dominated case R — 0 at £ = —oo. The nature of this behavior is less clear: the universe has some matter

and radiation in it and it had a big-bang singularity.
a(t)
12f

Cut[84]=

b (Gyr)
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The different stages of evolution of a FRW flat model with equal amounts 2,,, = Q. = Qz = 1/3. The
potential is shown in the previous figure. It is first radiation dominated, then matter dominated and finally
vacuum dominated. The vertical line shows the present time with R(¢y) = 1. Both plots have use the
Mathematica notebooks provided by Leonard Parker’s book.

The first 3 minutes

Big Bang nucleosynthesis (also known as primordial nucleosynthesis, BBN) explains the production of
light nuclei, deuterium, 3He,*He, " Li, between 0.01s and 200s in the lifetime of the universe.

Elements heavier than lithium are thought to have been created later in the life of the Universe by stellar
nucleosynthesis, through the formation, evolution and death of stars.

BBN assumes a homogeneous plasma, at a temperature corresponding to 1 MeV, consisting of electrons
annihilating with positrons to produce photons. In turn, the photons pair to produce electrons and positrons:
ete™ <+ ~y. These particles are in equilibrium. A similar number of neutrinos, also at 1 MeV, have just
dropped out of equilibrium at this density. Finally, there is a very low density of baryons (neutrons and
protons). The BBN model follows the nuclear reactions of these baryons as the temperature and pressure
drops due to expansion of the universe.

The basic model makes two simplifying assumptions:

1. until the temperature drops below 0.1 MeV only neutrons and protons are stable and
2. only isotopes of hydrogen and of helium will be produced at the end.

These assumptions are based on the intense flux of high energy photons in the plasma. Above 0.1 MeV
every nucleus created is blasted apart by a photon. Thus the model first determines the ratio of neutrons to
protons and uses this as an input to calculate the hydrogen, deuterium, tritium, and 3 He.

Around kT ~ 1 MeV, the density of neutrinos drops, and reactions like n + e+ <+ p + U, which main-
tained neutron and proton equilibrium, slow down. The neutron-to-proton ratio decreases to around 1/7. As
the temperature and density continue to fall, reactions involving combinations of protons and neutrons shift
towards heavier nuclei. These include p+n — D+, D+D — n+ 3He, >He + D — p 4+ *He. Due to
the higher binding energy of He, the free neutrons and the deuterium nuclei are largely consumed, leaving
mostly protons and helium.

The fusion of nuclei occurred between roughly 10 seconds to 20 minutes after the Big Bang; this corre-
sponds to the temperature range when the universe was cool enough for deuterium to survive, but hot and
dense enough for fusion reactions to occur at a significant rate.

The key parameter which allows one to calculate the effects of Big Bang nucleosynthesis is the baryon/photon
number ratio, which is a small number of order 6 x 10~'°. This parameter corresponds to the baryon den-
sity and controls the rate at which nucleons collide and react; from this it is possible to calculate element
abundances after nucleosynthesis ends. Although the baryon per photon ratio is important in determining
element abundances, the precise value makes little difference to the overall picture. Without major changes
to the Big Bang theory itself, BBN will result in mass abundances of about 75% of hydrogen-1, about 25%
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helium-4, about 0.01% of deuterium and helium-3, trace amounts (on the order of 10~1°) of lithium, and
negligible heavier elements. That the observed abundances in the universe are generally consistent with
these abundance numbers is considered strong evidence for the Big Bang theory.

The primordial abundance of the elements is established when the temperature after the Big-Bang drops
below ~ 0.1 MeV and the thermonuclear reactions which can alter the relative abundance of the existing
elements stops.

Let’s calculate when this primordial abundance is set. The early universe is radiation dominated. The
energy density is well approximated as a function of temperature with (148)

7'('2 (k‘BT)4
Pr =955 3
30 (hc)

where a good phenomenological take for g is g = 3.4. The scale facto is R ~ t'/2. With the equation
above and (156) we get

1 8 1 T *
— = —p(t) =2.75 . 166
w3 W IGhc3 <(Gh/c3)1/2) (166)
In units of time in seconds and temperature in MeV, we get
2
t=1.3 (Méev) P (167)

which gives when 7' = 0.1 MeV a ¢t = 130 which rounding up is approximately the first 3 minutes.
Age and the Hubble constant in the flat FRW model

If we assume we live in a flat FRW universe with a metric

ds* = —dt* + R*(t)(dz? + dy? + dz?) (168)

2/

If we assume that matter is the dominant form of energy R(t) x (t) % and the equation connecting with

the Hubble time is

R(to)
Hoy=H(ty) = 169
0 (to) R(to) (169)
which gives
2 2
to=— = -tg. 170
" 3H, 3" (170)

Assuming a value of Hy = 72 (km/s)/Mpc the age opf the Universe is approximately 9 Gyr. But the age
of the oldest stars in our galaxy is approximately 12 Gyr. This indicates that the flat FRW is not a perfect fit
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for modeling the evolution of our universe.
General Solution of the Friedman Equation

It is appropriate to use a dimensionless scale factor:

R=R(t)/Ry 171)

_ This is directly related to the redshift z of radiation coming from comoving galaxies at the time ¢ by
R =1/(1 + z). Similarly the Hubble time can be used to define a dimensionless measure of time:

t=t/tg = Hot (172)
The critical density defined as (158)
H2
Perit = 3Hq =1.88 x 10729hzg/cm2
8T
can be used to scale densities. For example
pr = peritSl/(R(1))*, (173)

We can even introduce an €2, to quantify the curvature defining
Qe = —k/(HoRo)", (174)

With this definition the Friedman equation reads at the present time

QA+ Qo + 0 + Q. =1, (175)

Of course this could not work if we are dealing with a closed universe model where €2. < 0. The rescaled
Friedman equation reads now:

=\ 2
1 (dR N
- . =<, 176
2<dt> FUers(B) =5 (176)
where the effective potential energy is
_ 1 _ Q Q
Uess(R) = —= [ OaR? + = + = 177
r(R) 2(1\ +R+R2>7 (177)

and 2 is given in terms of the other 2’s by (175). Equations (176) and (177) reduce to (161) and (162)
for a flat FRW model.
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To construct a general FRW cosmological model from here the procedure is: -
(1) Specify the four parameters Hy, Qa, Q, Q. (2) Use the last three to solve (176) for R(%) by writing

dR (Q, — 2U.45(R))"* = dt (178)

Then we have to undo the rescaling of Hy to go back to ¢ from ¢ and find the value of Ry from (174).
The result for R(t) is

1 _
= — = R(Hyt). 179
HOlQC|1/2 ( 0) ( )

A FRW cosmology is consequently determined by the four cosmological parameters:

R(t)

| Ho, Q, O, Qn, (180)

These specify the past, present and future of the universe. To determine them from observation is the goal
of theoretical cosmology.

The age of the universe as a function of the cosmological parameters

From (172) the age of the universe is

1 _
tO - Foto (Q’IWQ’ITHQA) (181)

The function o (., 2y, Q24) is dimensionless and is the value of £ where R(f) = 1.
This function can be obtained integrating (176).

The different stages of evolution of FRW models in the 2,,, — (25 plane.
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