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The Penrose process and Black Hole Thermodynamicsa

aThis lesson follows mostly Chapter 6 from S. Carroll’s book

We will study geodesics in the Kerr metric. Remembering that we
have T = ∂/∂t and R = ∂/∂φ as Killing vectors we can study the
conserved quantities associated with them. The four momentum:

pµ = m
dxµ

dτ
(1)

where m is a particle’s rest mass. We can construct the energy:

E = −Tµpµ = m

(
1− 2GMr

ρ2

)
dt

dτ
+

2mGMar

ρ2
sin2 θ

dφ

dτ
(2)

and the angular momentum associated with R. With L = Rµp
µ

L = −2mGMar

ρ2
sin2 θ

dt

dτ
+

m(r2 + a2)2 −m∆a2 sin2 θ)

ρ2
sin2 θ

dφ

dτ
(3)
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The minus sign in eq (2) reflects the fact that at infinity both Tµ

and pµ are timelike so their inner product is negative, but we need
the energy to be positive. But inside the ergosphere Tµ becomes
spacelike. So we can think of particles for which

E = −Tµpµ < 0 (4)

The Penrose process rests on a simple idea: from outside the
ergosphere we can have an observer with a massive rock. The
momentum of the system observer plus rock is p(0)µ. The energy
E (0) = −Tµp(0)µ is positive. The observer and rock momenta are
p(1)µ and p(2)µ respectively

p(0)µ = p(1)µ + p(2)µ (5)

contracting with the Killing vector their energy is

E (0) = E (1) + E (2) (6)

If the rock is thrown beyond the stationary surface into the inner
E-H of the B-H with E (2) < 0
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The Penrose process: an object breaks down in two as it falls into
the ergosphere, within the stationary limit but outside the outer

event horizon.
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At the end

E (1) > E (0) (7)

Killing Horizons
A null hypersurface at which a Killing vector field χµ becomes null
is called a Killing Horizon (K-H). How does it relate to event
horizons (E-H)?

1 Every E-H Σ in a stationary, asymptotically flat S-T is a K-H
for some Killing vector field χµ.

2 If the S-T is static, the χµ will be the Killing vector field
Tµ = (∂/∂t)µ representing time translations at infinity.

3 If the S-T is stationary χµ = Tµ + ΩHR
µ where ΩH is some

constant and Tµ is as in 2) and Rµ = (∂/∂φ)µ.

Note: there could exist K-H even when no E-H exist: in Minkowski
there a re no E-H. A Killing vector χ = x∂t + t∂x (it generates
boosts in the x-direction) has norm χµχµ = −x2 + t2 which goes
null at x = ±t.
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There is energy gained: the Penrose process extracts energy from
the rotating B-H by decreasing its angular momentum: the object
has to be thrown against the hole’s rotation. For Kerr B-H an E-H
is a K-H for χµ = Tµ + ΩHR

µ where ΩH = a
r2

++a2 is the angular

velocity of the horizon (r+ is defined in eq 115, slide 54). The
angular velocity can be obtained by studying the trajectory of a
photon emitted in the φ direction in the equatorial plane
(θ = π/2). In this case ds2 = 0 = gttdt

2 + 2gtφdtdφ+ gφφdφ
2

which yields dφ
dt = − gtφ

gφφ
±
√(

gtφ
gφφ

)2
− gtt

gφφ
. AT the stationary

limit gtt = 0 and we can define it a the E-H by evaluating it at r+.

ΩH =
a

r2
+ + a2

(8)
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χµ becomes null at the outer E-H by construction. The thrown
object will be crossing the E-H forward in time, which implies
p(2)µχµ < 0. Using (2) and (3) this latter condition becomes
p(2)µTµ + ΩHp

(2)µRµ = −E (2) + ΩHL
(2). from this we get:

L(2) <
E (2)

ΩH
(9)

But we required E (2) to be negative (and ΩH is positive) which
means then that L(2) is negative and the particle must have
negative angular momentum, i.e. move against the hole’s rotation.
But the mass and angular momentum of the hole will change
proportionally i.e. δM = E (2) and δJ = L(2), where J = Ma is the
angular momentum of the B-H. Then (9) gives us a limit on how
much can we decrease the angular momentum

δJ <
δM

ΩH
. (10)

In a ”perfect” process this can become and identity. But M can
not be decreased beyond a fundamental limit.
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The area Theorem
The area of the outer E-H is located at

r+ = M +
√

M2 − a2 (11)

and can be calculated over θ, φ with dt = dr = 0 in the Kerr metric

ds2(r = r+) = (r2
+ + a2cos2θ)dθ2 +

[
(r2

+ + a2)2sin2θ

r2
+ + a2 cos2 θ

]
dφ2.

(12)

The horizon area is given by the integral of the induced volume
element ds2 = γijdx

idx j in (12) as

A =

∫ √
|γ|dθdφ. (13)

The determinant |γ| = (r2
+ + a2)2sin2θ, so A = 4π(r2

+ + a2)
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Let’s define now the irreducible mass of the B-H M2
irr = A. The

reason for the name will become clear soon.

M2
irr = A = 4π(r2

+ + a2) =

= 8π
(
M2 +

√
M4 − J2

)
(14)

where we use eq(11) and J = Ma. Differentiating we can calculate
a variation in the irreducible mass:

δMirr =
8πa√

M2 − a2

(
δM

ΩH
− δJ

)
. (15)

And we see from (10) that we get

δMirr > 0. (16)
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the maximum of energy we can extract from a Kerr B-H is

M −Mirr = M −
[
8π
(
M2 +

√
M4 − J2

)]1/2
(17)

The result will be a Schwarzschild B-H of mass Mirr . From (14) we
can calculate δA and we get

δM = κδA + ΩHδJ (18)

where

κ =

√
M2 − a2

16πM(M +
√
M2 − a2)

(19)

κ is called the surface gravity. Eq (18) is highly reminiscent of

dE = TdS − pdV (20)

from thermodynamics. We can think of ΩHδJ in (18) as work
done on the hole by throwing ”mass” at it.
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This would quickly lead to associate

E ↔ M

S ↔ 8πA

T ↔ ακ (21)

We can enunciate then the Laws of B-H thermodynamics:

1 Zero law: Stationary B-Hs have constant surface gravity on
the entire horizon (equivalent to the temperature being
constant in a system in thermal equilibrium.

2 First law will be (18) which is equivalent to (20).

3 Second law: the area of a horizon never decreases (equivalent
to the entropy).

4 a Third law doesn’t quite exist for B-H due to the fact that
κ = 0 -the equivalent to T = 0- corresponds to extreme B-Hs
while in classical thermodynamics T − 0 cannot be reached.
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The correspondence (21) has some caveats. But Hawking showed
that quantum fields in a curved background allow the B-H to
radiate at a T ∝ κ. With this result it is completely appropriate to
interpret then A as proportional to the entropy of the B-H.
Bekenstein proposed a generalized 2nd law

δ

(
S +

A

4G

)
> 0 (22)

This latter result in units where ~ = c = k = 1. If we want to cast
this result in terms of information theory (entropy proportional to
the number of quantum states accessible to the B-H) there seems
to be a contradiction with the fact that only mass and spin (and
charge) characterize the B-H. This indicates a need for a quantum
theory of gravity, which we don’t have yet.
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