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1 Hypersurface-orthogonal vector fields
What is the difference between static and stationary? Static means that the solution does not change with
time, but furthermore that it is invariant under time reversal. A metric is stationary if there is no dependence
on time but there is still ”evolution”. Let’s refine the definition: We will say that a metric is stationary if
there is a coordinate system in which the metric is clearly time-independent, i.e.

∂gab
∂x0

∗
= 0, (1)

where x0 is a timelike coordinate. But how do we make this statement coordinate independent? We define a
vector field

Xa ∗= δa0 , (2)

In this special coordinates, the Lie derivative of the metric is

L ~Xgab = Xcgab,c + gacX
c
,b + gbcX

c
,a

∗
= δc0gab,c = gab,0 = 0 (3)

L ~Xgab is a tensor, and hence if it vanishes in one system it vanishes in all. Xa is a Killing vector field. And
if given a timelike Killing vector field we can always adapt coordinates in which

0 = L ~Xgab
∗
= gab,0, (4)

and consequently the metric is stationary.
In summary:

A space-time is said to be stationary if and only if it admits a timelike Killing vector field.
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2 Hypersurface-orthogonal vector fields
Let’s have a family of hyper surfaces given by:

f(xa) = µ, (5)

µ defines the members of the family.

If we choose two closed points P and Q in one of the hypersurfaces S with coordinates (xa) and (xa+dxa)
we get to first order,

µ = f(xa + dxa) = f(xa) +
∂f

∂xa
dxa (6)

Using (5) we get at P ,

∂f

∂xa
dxa = 0 (7)

We can define now a covariant vector field na

na ≡
∂f

∂xa
(8)

Then (7) becomes,

nadx
a = gabn

adxb = 0 (9)
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na is called the orthogonal vector field to S at P . Any other vector field Xa is called hypersurface-
orthogonal if it is everywhere orthogonal to the family of hyper surfaces, i.e. it is proportional to na every-
where, i.e.

Xa = λ(x)na (10)

Then the orbits of Xa are orthogonal to the family of hypersurfaces.

and Xa is

Xa = λf,a (11)

and then,

Xa∂bXc = λf,aλ,bf,c + λ2f,af,cb (12)

This is equivalent to, taking the totally antisymmetric part of the equation and using covariant derivatives we
get,

X[a∇bXc] = 0 (13)

What it was shown above is that any hypersurface-orthogonal vector field satisfies (13). The converse is
(partially) true: any non-null Killing vector satisfying (13) is necessarily hypersurface-orthogonal. We just
stated it without proof.

3 Characterization of coordinates
We need to characterize the Schwarzschild solution in an ”invariant” way. Any arbitrary interpretation of
coordinates could be meaningless. But there are certain characterizations that can be done: Let’s say we
have a hypersurface,

x(a) = constant (14)

A valid question is what is its nature? i.e. timeline, null, or space like at a point. The normal vector field is

nb = δ
(a)
b , (15)
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it’s contravariant version

nc = gcbnb = gcbδ
(a)
b = gc(a) (16)

n2 = ncnc = gc(a)δ(a)c = g(a)(a), (no sum) (17)

If the signature is −2, then (1) at P is timelike, null or spacelike depending on wether g(a)(a) is > 0,
= 0, or < 0. Of course we will start exploiting the symmetries of the Schwarzschild solution. Thus the
metric in coordinates t, r, θ, φ) (I’ll be using in what follow a signature (+,−,−,−)).

g00 = (1− 2m/r)−1dt2, g11 = −(1− 2m/r)dt2, g22 = −1/r2,

g33 = − 1

r2 sin2 θ
(18)

x0 = t is timelike and x1 = r spacelike if r > 2m and x2 = θ and x3 = φ are spacelike. The Schwarzschild
coordinates (t, r, θ, φ) are canonical coordinates defined invariantly by the symmetries present.

4 Singularities
Points like θ = 0, π are not covered by the Schwarzschild metric because the line element becomes degen-
erate there.
This is a coordinate problem.
How about r = 2m and r = 0? If we look at the scalar invariant

RabcdR
abcd = 48m2r−6 (19)

We easily see that it is well defined at r = 2m. But it does implode at the origin. This singularity is
intrinsic and irremovable. The gravitational redshift is determined by the g00 coefficient of the metric (i.e.
see d’Inverno) :

ν̄0 = ν0

(
g00(xα1 )

g00(xα2 )

) 1
2

(20)

in terms of the Schwarzschild metric:

δν

ν
' −GM

c2

(
1

r1
− 1

r2

)
(21)
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The picture above illustrates how to calculate eq (21) and shows clearly, that the surface r = 2m defines a
sphere of infinite redshift, that cannot communicate with r > 2m.

5 Space-time diagrams
The Schwarzschild solution represents a vacuum solution outside a body of massm, where outside is defined
by r > r0 = 2m In the case of stars we study interior solutions in Lesson 11. We want here to study the
Schwarzschild vacuum solution for all values of r regardless of any source. r = 2m is a null hyper surface
dividing the manifold into two disconnected components:

I. 2m <r <∞
II. 0 <r < 2m.

Inside the region II t and r reverse their character with t becoming spacelike and r timelike. The main
technique we can use to interpret coordinates is a ”spacetime diagram”. In particular we want to look at the
structure of the local light-cone. This is defined as the geometric figure spanned by the points xα0 + dxα in
the vicinity of a point xα0 for which:

gabdx
adxb = 0

Notice that the ”light cone” should be understood in pure ”space” as the spherical wave front centered
on the point and reaching another point at a later time. if we use only two space dimensions (or one) it is
easy to picture it as a cone where the circles at a given time represent this wave fronts.
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6 Schwzarschild’s coordinares S-T diagrams
In Lesson 11 we study the variational method to calculate geodesics, eq (59) and we defined

2K ≡ gab(x)ẋaẋb = α,

With

ds2 = θ̇ = φ̇ = 0 (22)

With this:

2K = (1− 2m/r)ṫ2 − (1− 2m/r)−1ṙ2 = 0 (23)

The dot means derivation respect to a geodesic parameter u. The E-L equation(60) with a = 0 is

d

du
[(1− 2m/r)ṫ] = 0 (24)

with integral:

(1− 2m/r)ṫ = k (25)

So in (23) ṙ2 = k2 and then ṙ = ±k We can try to find the solution in the form t = t(r),

dt

dr
=
dt/du

dr/du
=
ṫ

ṙ
, (26)

From (25) and from ṙ = ±k,

dt

dr
=

r

r − 2m
, (27)
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And integrating,

t = r + 2m ln |r − 2m|+ constant (28)

In region I from (27) r > 2m ⇒ dr
dt > 0, and r increases as t increases. Then curves (28) define a

congruence of outgoing radial null geodesics. The opposite case gives the congruence of ingoing radial null
geodesics.

t = −(r + 2m ln |r − 2m|+ constant). (29)

Plot from d’Inverno’s book

This plot shows θ and φ suppressed but due to symmetry the plot would look the same for any value of them.
The local light cones would flip over when crossing regions due to the different nature of the coordinates.
An observer inside the BH is forced to fall towards r = 0.

7 Infalling particles
A particle moving radially into the B-H will move on a timelike geodesic

(1− 2m/r)ṫ =k (30)

(1− 2m/r)ṫ2 − (1− 2m/r)−1ṙ2 =1 (31)

The dot means derivative respect to the proper time. If we choose initial condition corresponding to dropping
the particle from∞ with v0 = 0, meaning at large r ṫ ' 1 we’ll get(

dτ

dr

2)
=

r

2m
(32)

Taking the negative sq rt and integrating, we find where the particle is at r0 at time τ0:

τ − τ0 =
2

3(2m)
1
2

(r
3
2
0 − r

3
2 ) (33)
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If we describe motion in terms of t

dt

dr
=
ṫ

ṙ
= − r

2m

1
2

(
1

2m

r

)−1
(34)

Integrating, we obtain

t− t0 = − 2

3(2m)
1
2

(r
3
2 − r

3
2
0 + 6mr

1
2 − 6mr

1
2
0 )

+2m ln
[r

1
2 + (2m)

1
2 ][r

1
2
0 − (2m)

1
2 ]

[r
1
2
0 + (2m)

1
2 ][r

1
2 − (2m)

1
2 ]

(35)

Whenever r0 and r are much larger than 2m (33) and (35) give pretty much the same result. But if r is close
to 2m we get,

r − 2m = (r0 − 2m)e−(t−t0)/2m (36)

and we can easily infer that as t→∞⇒ r − 2m→ 0

Radially infalling particle in coordinates t and τ
Plot from d’Inverno’s book

8 Eddington-Finkelstein coordinates
Following (28) we change coordinates, and for r > 2m,

t→ t̄ = t+ 2m ln(r − 2m) (37)

In the new (t̄, r, θ, φ) (28) becomes:

t̄ = −r + constant, (38)

This is a straight line at −45◦ from the r axis. From it,

dt̄ = dt+
2m

r − 2m
dr, (39)
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and the new metric,

ds2 =(
1− 2m

r

)
dt̄2 − 4m

r
dt̄dr − (1 + 2mr) dr2 − r2(dθ2 + sin2 θdφ2). (40)

Schwarzschild solution in Eddington-Finkelstein coordinates
Plot from d’Inverno’s book

A few comments: E-F metric is regular everywhere but r = 0, but it is no longer time-symmetric.
Outgoing radial null geodesics can be described as straight lines with

t→ t∗ = t− 2m ln(r − 2m), (41)

(40) using a null coordinate (advanced parameter) becomes

v = t̄+ r, (42)

ds2 = (1− 2m/r)dv2 − dvdr − r2(dθ2 + sin2 θdφ2). (43)
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9 Event horizon

Equatorial plane cut from the previous figure, fixed t̄ in Eddington-Finkelstein coordinates
Drawing from d’Inverno’s book

It is clear now that r = 2m acts as a one way membrane: only future directed timelike and null curves
cross from outside. No future directed timelike or null curves can escape from the outside. This is an
absolute event horizon. We can use w − t ∗ −r and (40) is ” time-reversed”,

ds2 = (1− 2m/r)dw2 + 2dwdr − r2(dθ2 + sin2 θdφ2). (44)

This is once more regular for 0 < r <∞.
The membrane acts in the opposite time direction: only past-directed timelike or null curves cross from the
outside to the inside.

S-T Diagram in time reversed Eddington-Finkelstein coordinates
Plot from d’Inverno’s book

The following drawing shows a gravitational collapse obtained in t̄ and r coordinates made by rotating
r around the t̄ axis, i.e. one dimension suppressed.
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Gravitational collapse
Drawing from d’Inverno’s book

10 Einstein Rosen bridge and wormholes
Let’s consider now the Schwarzschild solution in null coordinates advanced and retarded coordinates,

v = t+ r + 2m ln(r/2m− 1), u = t− r − 2m ln(r/2m− 1) (45)

Then,

ds2 = −(1− 2m/r)dudv + r2(dθ2 + sin2 θdφ2). (46)

If we introduce coordinates

z = 1/2(ev/4m + e−u/4m), w = 1/2(ev/4m − e−u/4m) (47)

ds2 =
32m3

r
e−r/2m(dz2 − dw2) + r2(z, w)dΩ2 (48)

which is the Schwarzschild metric in Kruskal-Szekeres coordinates.
If we now consider a S-T with coordinates z,w, θ and φ we can look at the space like slice w = 0 and

put θ = π/2, then

ds2 =
32m3

r
e−r/2mdz2 + r2dφ2 =

(
r

r − 2m

)
dr2 + r2dφ2 (49)

This is the metric on a surface which is a paraboloid of revolution (i.e. by rotating the parabola y = z2

8m+2m
around the z axis).
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Wormhole

11 Charged Black Holes
If we want to find a solution with spherical symmetry which corresponds to a mass m and electric charge
q we need to solve the Einstein’s eqs for an energy momentum tensor that would not be zero. The energy
momentum tensor of an electromagnetic field is traceless, so Einstein’s eqs become:

Rab = 8πTab (50)

Tab =
1

4π
(−gcdFacFbd +

1

4
gabFcdF

cd) (51)

∇bF ab = 0 (52)
∂[aFbc] = 0. (53)

Fab = E(r)


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 . (54)

With a metric,

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2), (55)

where ν and λ are functions of r only. Then solving for the metric (54) in (50) with the constraints (51),
(52) and (53) we get just one equation:

d

dr
(e−

1
2 (ν+λ)r2E) = 0, (56)

Integrating we get,

E = e−
1
2 (ν+λ)q/r2, (57)

where q is a constant of integration. Our solution should be asymptotically flat for large r, i.e.

ν, λ→ 0 as r →∞ (58)

And then E ∼ q/r2 asymptotically which justifies the choice of q. Using (54) and (56) we find in (51)
that the 00 and 11 eqs,

d

dr
(ν + λ) = 0 (59)

which from (58) implies λ = −ν. Using the 22 eq.

d

dr
(reν) = 1− q2/r2, (60)
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which gives

eν = 1− 2m/r + q2/r2, (61)

with m a constant of integration (like q), and then the Reissner-Nordstrøm solution:

ds2 =
(
1− 2m/r + q2/r2

)
dt2 −

(
1− 2m/r + q2/r2

)−1
dr2

−r2(dθ2 + sin2 θdφ2), (62)

12 Singularities in Reissner-Nordstrøm
Looking at the polynomial

Q = r2 + q2 − 2mr (63)

it has discriminant m2 − q2 and hence three different possibilities.Let r± be,

r± = m± (m2 − q2)
1
2 (64)

The line element is regular in these regions,

I.r+ < r <∞,
II.r− < r < r+,

III.0 < r < r−.

IF Q2 = M2 only regions I and III exist. The regions are separated by the null hypersurfaces r = r+ (like
in Schwarzschild r = 2m) and r = r−

Restricting to q2 < m2 for r > r+ we define,

t̄ = t+
r2+

r+ − r−
ln(r − r+)−

r2−
r+ − r−

ln(r − r−) (65)

The metric then becomes, after defining f

f = 2m/r − q2/r2 (66)

ds2 = (1− f)dt̄2 − 2fdt̄dr − (1 + f)dr2 − r2(dθ2 + sin2 θdφ2), (67)

The ingoing null geodesics are

t̄+ r = constant (68)

and the outgoing ones

dt̄

dr
=

1 + f

1− f
, (69)

13



Reissner-Nordstrøm q2 < m2 solution in advanced Eddington-Finkelstein coordinates
Plot from d’Inverno’s book

Notice that in region III neutral particles cannot reach the singularity.

13 Penrose diagrams
A Penrose diagram is a two-dimensional diagram that describes the causal relations between different points
in spacetime. It is is similar to a Minkowski diagram where the vertical axis represents time, the horizontal
axis space, and lines at 45◦ light rays. The basic idea is to ”squeeze” the entire space-time in a finite region
by performing a conformal transformation.

Minkowkski

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) (70)

We define

u = t− r, v = t+ r (71)

ds2 = −dudv +
1

4
(u− v)2(dθ2 + sin2 θdφ2) (72)

We introduce a conformal factor,

Ω2 =
1

(1 + u2)(1 + v2)
(73)

and this gives

ds̄2 = Ω2ds2 = − dudv

(1 + u2)(1 + v2)
+

1

4

(u− v)2

(1 + u2)(1 + v2)
(dθ2 + sin2 θdφ2) (74)
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And now define u = tan p and v = tan q, so that,

(u− v)2

(1 + u2)(1 + v2)
= sin2(p− q) (75)

And then (69) becomes

ds̄2 = −dpdq +
1

4
sin2(p− q)(dθ2 + sin2 θdφ2) (76)

with

−π 6 p, q 6 π (77)

We can describe the geometric properties of this representation better defining

p = T −R, q = T +R (78)

with I + being the null future infinity and
I − the null past infinity. Timelike future infinity is ı+ and
the timelike past infinity is ı−,
ı0 represents space like infinity.

In the Penrose diagram,

ı+ : T = π,

ı− : T = −π,
ı0 : q = −p = π, R = π; p = −q = π, R = −π (79)

I + : T ±R = π,

I − : T ±R = −π,
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Conformal Minkowski

Let’s consider now,again, the Schwarzschild solution in null coordinates advanced and retarded coordi-
nates,

v = t+ r + 2m ln
( r

2m
− 1
)

u = t− r − 2m ln
( r

2m
− 1
)

(80)

ds2 = −(1− 2m/r)dudv + r2(dθ2 + sin2 θdφ2). (81)

We introduce now new U, V

U = −4me−u/4m, V = 4mev/4m (82)

(
1− r

2m

)
dudv =

2m

r
e−r/2mdUdV (83)

So now (81) becomes,

ds2 = −2m

r
e−r/2mdUdV + r2(dθ2 + sin2 θdφ2). (84)

The range of definition now changes

u = −∞, U = −∞ : v = −∞, V = 0

u = 0, U = −4m : v = 0, V = 4m

u =∞, U = 0 : v =∞, V =∞

and we also have
−∞ 6 U 6 0, 0 6 V 6∞
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But if we add to the diagram we would get from using these coordinates and range of values another diagram

U > 0, 0 6 V 6 0

we would get a diagram that represents Schwarzschild solution over the whole range in the Kruskal coordi-
nates,

−∞ 6 U, V 6∞

Conformal Schwarzschild in Kruskal coordinates

14 Rotating Black Holes
Null tetrads
We will use four LI vector fields eai , where i labels the vectors. We define the frame metric,

gij = gabei
aej

b (85)

We can define the inverse

gijg
jk = δki (86)

And then,

gab = gije
i
ae
j
b, (87)

Let’s define four unit vectors, va timelike and three spacelike ia, ja, and ka, and the frame metric (85)
is the Minkowski metric. We define now:

e0
a = la =

1√
2

(va + ia), (88)

e1
a = na =

1√
2

(va − ia) (89)
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Of course lala = nana = 0 and also satisfy lana = 1. We finally take e2a = ja and e3a = ka and we get
the following frame metric,

gij =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 (90)

and the following complex null vector and its conjugate

ma =
1√
2

(ja + ika), m̄a =
1√
2

(ja − ika) (91)

Of course, mama = m̄am̄a = 0, and mam̄a = −1. and now we choose the null tetrad,

(e0
a, e1

a, e2
a, e3

a) = (la, na,ma, m̄a), (92)

which has the associated frame metric,

gij =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 (93)

And then (87) can be written,

gab = lanb + lbna −mam̄b −mbm̄a, (94)

and,

gab = lanb + lbna −mam̄b −mbm̄a, (95)

The non-zero components of the Schwarzschild solution in Eddington-Finkelstein coordinates are

g01 = −1, g11 = −
(

1− 2m

r

)
, g22 = − 1

r2
, g33 = − 1

r2 sin2 θ
. (96)

which can be written in terms of the following tetrad,

la = (0, 1, 0, 0) = δa1 ,

na = (−1,−1

2
(1− 2m/r), 0, 0) = −δa0 −

1

2
(1− 2m/r)δa1 , (97)

ma =
1√
2r

(
0, 0, 1,

i

sin θ

)
=

1√
2r

(
δa2 +

i

sin θ
δa3

)
and we do the following complex transformation on the tetrad

v → v′ = v + ia cos θ, r → r′ = r + ia cos θ, θ → θ′, φ→ φ′ (98)
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Making the requirement that v′ and r′ are real,

l′
a

= δa1 ,

n′
a

= −δa0 −
1

2

(
1− 2mr′

r′2 + a2 cos2 θ

)
δa1 , (99)

m′
a

=
1√

2(r′ + ia cos θ)

(
−ia sin θ(δa0 + δa1 ) + δa2 +

i

sin θ
δa3

)
.

This is the Kerr solution and the contravariant form can be obtained using (95).

15 The Kerr solution
Let’s define

ρ2 = r2 + a2 cos2 θ (100)

Then

ds2 =

(
1− 2mr

ρ2

)
dv2 − 2dvdr +

2mr

ρ2
(2a sin2 θ)dvdφ̄+

−ρ2dθ2 −
(

(r2 + a2) sin2 θ +
2mr

ρ2
(a2 sin4 θ)

)
dφ̄2, (101)

where (v, r, θ, φ̄) are related to (t, r, θ, φ) by,

dv = dt̄+ dr = dt+
2mr + ∆

∆
dr (102)

dφ̄ = dφ+
a

∆
dr (103)

∆ = r2 − 2mr + a2 (104)

With this we can obtain Kerr’s solution in Boyer-Lindquist coordinates,

ds2 =
∆

ρ2
(dt− a sin2 θdφ)2 − sin2 θ

ρ2
[(r2 + a2)dφ− adt]2−

−ρ
2

∆
dr2 − ρ2dθ2 (105)

and the following is the original metric in Kerr form with (t̄, x, y, z)

ds2 = dt̄− dx2 − dy2 − dz2−

− 2mr3

r4 + a2z2

(
dt̄+

r

a2 + r2
(xdx+ ydy)+

+
a

a2 + r2
(ydx− xdy) +

z

r
dz

)2

, (106)
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t̄ = v − r,
x = r sin θ cosφ+ a sin θ sinφ,

y = r sin θ sinφ− a sin θ cosφ,

z = r cos θ

 (107)

The metric has the form,

ds2 = ηabdx
adxb − λlalbdxadxb, (108)

ηabl
alb = 0, λ =

2mr3

r4 + a2z2
(109)

la =

(
1,
rx+ ay

a2 + y2
,
ry − ax
a2 + y2

,
z

r

)
(110)

In Schwarzschild,

λ = 2m/r, la = (1, x/r, y/r, z/r). (111)

16 Basic properties
Starting with the Boyer-Lindquist:

• If we set a = 0 we regain the Schwarzschild solution. So m is the geometrical mass.

• Metric coefficients are independent of t and φ so the solution has ∂/∂t and ∂/∂φ as Killing vector
fields. i.e. it is stationary and axially symmetric.

• The solution is invariant under simultaneous t→ −t and φ→ −φ. Similarly it is also under t→ −t
and arightarrow − a which indicates that it represents a spinning object with spin a.

• The standard polar coordinate isR2 = x2+y2+z2 = r2+a2 sin2 θ. For r � a R = r+ a2 sin2 θ
2r +· · ·

which shows that as r →∞ alsoR→∞ and then gab → ηab which shows that Kerr is asymptotically
flat.

17 Angular Momentum
• All efforts to interpret exactly the meaning of a, although not all having the same mathematical and

physical rigor, conclude nonetheless that the parameter a in the Kerr solution is related to the angular
velocity and that ma is related to the angular momentum.

• Expanding (106) in powers of 1/R we get:

ds2 =

(
1− 2m

R
+ · · ·

)
dt2 − 4ma

R3
(xdy − ydz)dt+ · · · (112)

• Which is a strong suggestion that ma corresponds to the angular momentum of the hole.
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18 Singularities
• Calculating the Riemann invariant Rabcdabcd we can see that the only essential singularity occurs at
ρ = 0.

• ρ = 0 implies

ρ2 = r2 + a2 cos2 θ = 0 (113)

• This implies that the singularity is located where both r = 0 and cos θ = 0.

• This occurs when z = 0 and x2 + y2 = a2.

• The singularity then is a ring of radius a located in the plane z = 0.

• The surfaces of infinite redshift occur when

g00 = (r2 − 2mr + a2 cos2 θ)/ρ2, (114)

• The surfaces are then

r = rs± = m± (m2 − a2 cos2 θ)1/2 (115)

• the Schwarzschild metric is neatly obtained in the limit a→ 0.

• we find in general two surfaces of infinite redshift.

• To study horizons it is convenient to look at the Killing vector field Xa = (1, 0, 0, 0) with magnitude
X2 = g00.

• This vector is then timelike outside S+ and inside S−, null on both S+ and S−.

• We look then for the event horizon by looking for the hypersurfaces where r = const becomes null,
i.e. where g11 = 0.

• Using Boyer-Lindquist coordinates (105)

g11 = −∆

ρ2
= −r

2 − 2mr + a2

r2 + a2 cos2 θ
(116)

• which implies that g11 = 0 when r2 − 2mr + a2 = 0

• if we assume that a2 < m2 this results in two null event horizons.

r = r± = m± (m2 − a2)1/2. (117)

• Kerr is regular in three regions:

I. r+ < r <∞
II. r− < r < r+, (118)
III. 0 < r < r−
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• when a → 0 the two event horizons reduce to r = 2m and r = 0, i.e. in Schwarzschild the surfaces
of infinite redshift and the event horizons coincide.

• in Kerr r = r+ is completely within the sphere S+. The region between the two spheres (notice that
the distance to r = 0 of S+ is modulated by a factor a cos2 θ) is called the ergosphere.

• Kerr is no longer spherically symmetric so we no longer expect it ti have radially null geodesics.

• the next slide show a diagram of the different event horizons and the surfaces of infinite redshift in
Kerr.

The event horizons, the essential singularity and the surfaces of infinite redshift in Kerr
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