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1 The principle of equivalence
There are different versions, stronger or weaker, of the principle:

• The motion of a gravitational test particle in a gravitational field is independent of its mass and it
composition.

• The gravitational field is coupled to everything.

• There are no local experiments which can distinguish non-rotating free fall in a gravitational field from
uniform motion in space in the absence of a gravitational field.

• A frame linearly accelerated relative to an inertial frame in special relativity is locally identical to a
frame at rest in a gravitational field.

Notice that we can formulate this mathematically in the following language: A test particle in Minkowski
moves according to:

d2xa

dτ2
= 0. (1)

In a noninertial system of reference:

d2xa

dτ2
+ Γ abc

dxb

dτ

dxc

dτ
= 0. (2)

Notice that if want to regard Γ abc as force terms, then gab has to be seen as potentials.

We need to generalize these ideas to build a relativistic theory of gravitation.

2 The principle of general covariance
Einstein propose then the following two principles to build a theory of gravitation consistent with relativity:

• Principle of General Relativity
All observers are equivalent. In special relativity we have preferred systems, Minkowski coordinates.
In a general curved space time we don’t have a preferred coordinate system. (although there are
symmetries).
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• Principle of General Covariance
The equations of physics should have tensorial form. What this means is that the theory should be
invariant under coordinate transformations.

3 The principle of minimal gravitational coupling
This is a simplicity principle when making the transition to general relativity from special relativity. i.e. if
we have the conservation law:

∂bT
ab = 0 (3)

The simplest generalization is:

∇bT ab = 0 (4)

We could have taken:

∇bT ab + gbeRabcd∇eT cd = 0 (5)

but the Principle would stay: ”No terms explicitly containing the curvature tensor should be added when
making the transition.”

4 The correspondence principle
The correspondence principle states simply that any theory of General Relativity should contain in the ap-
propriate limit other theories that have stand the test of time. In the weak field limit, far from the sources,
when speeds of the bodies involved are low, GR should reproduce Newton’s theory of gravitation. In the
absence of masses GR should become Special Relativity.
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5 The full field equations
Let’s revisit the Einstein’s field equations:
The information about all the fields and forms of energy acting or present in a region of space time can be
encoded in the energy-momentum tensor T ab. After all the equivalence of mass and energy suggest that all
forms of energy act as sources for the gravitational field.

If we assume that T ab is the source of the field equations we know that:

∂bT
ab = 0 (6)

This can be generalized to:

∇bT ab = 0 (7)

But we also know that the Einstein tensor satisfies the Bianchi identities:

∇bGab ≡ 0 (8)

It was precisely this fact what suggested that the two tensors are proportional to one another. Thus we
have:

Gab = κT ab (9)

In no relativistic units we will see that κ following the correspondence principle:

κ = 8πG/c4 (10)

So the full GR equations are:

Gab =
8πG

c4
T ab (11)

6 Another look at metrics and curvature
If we compare a straight line and a circle we would say that the first one has no curvature but that the
second one is curved, but after our definition of the Riemann tensor this can not be true. The Riemann
tensor is identically zero in one dimension. Our intuitive definition of curvature is always thinking about an
embedding in Euclidean space. Let’s discuss the following example: A torus is an object in two dimensions
where the Riemann tensor has only one independent component.
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A torus can be considered as a square region of the plane with opposite sides identified.

A valid metric for the torus could be the following one with 0 < u, v < 2π

ds2 = (c+ a cos v)2du2 + a2 sin2 dv2 (12)

The following transformation

x = (c+ a cos v) cosu (13)
y = (c+ a cos v) sinu (14)

could change it into ds2 = dx2 + dy2.

On the other hand let’s look at the sphere S2:

ds2 = a2(dθ2 + sin2 θdφ2), (15)

The non=zero connection coefficients for (39) are:

Γ θφφ = − sin θ cos θ (16)

Γφθφ = Γφφθ = cot θ (17)

And the components of the Riemann tensor:

Rθφθφ = ∂θΓ
θ
φφ − ∂φΓ θθφ + Γ θθλΓ

λ
φφ − Γ θφλΓ

λ
θφ (18)

=(sin2 θ − cos2 θ)− 0 + 0− (− sin θ cos θ)(cot θ) (19)

= sin2 θ (20)

lowering the index we get:

Rθφθφ = gθλR
λφθφ (21)

= gθθR
θφθφ (22)

= a2 sin2 θ (23)
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Computing the Ricci tensor Rµν = gαβRαµβν :

Rθθ = gφφRφθφθ = 1 (24)
Rθφ = Rφθ = 0 (25)

Rφφ = gθθRθφθφ = sin2 θ (26)

And the Ricci scalar is:

R = gθθRθθ + gφφRφφ =
2

a2
. (27)

7 Physics in slightly curved space-times
Let’s review some concepts from Special Relativity that are crucial to understand General Relativity. Space
time is the arena of Special Relativity. A single point in this S-T is a set {t, xi} where in general i = 1, 2, 3.
This is what we call an event. A line giving the position of a particle as time evolves is called the world line.
Let’s summarize then the main concepts that takes us from differential geometry to a theory of gravity.

• Spacetime understood as the set of all events, is a four dimensional manifold endowed with a metric.

• The metric is measurable by rulers and clocks. The distance along a ruler between two adjacent points
is |d~x · d~x]1/2 and the time measure by two clocks for events that are close in time is | − d~x · d~x]1/2.

• The metric of ST can be put in the Lorentz form ηab by an appropriate choice of coordinates.

• Weak Equivalence Principle: Freely falling particles move on timelike geodesics of the ST. Equiva-
lently: in a uniform gravitational field all objects, regardless of their composition, fall with precisely
the same acceleration, which can also be stated as in a gravitational field the acceleration of a test
particle is independent of its properties, including its rest mass.

• Einstein’s Equivalence Principle: The outcome of any local, non-gravitational test experiment is in-
dependent of the experimental apparatus’ velocity relative to the gravitational field and is independent
of where and when in the gravitational field the experiment is performed.

• Strong Equivalence Principle: this is a version of the equivalence principle that applies to objects that
exert a gravitational force on themselves, such as stars, planets, or black holes. It requires that the
gravitational constant be the same everywhere in the universe and is incompatible with a fifth force. It
is much more restrictive than the Einstein equivalence principle.

The Einstein’s equivalent Principle is equivalent to the statement that if we could describe a physical
interaction as a tensor relation in Special Relativity then this description should hold true in a locally inertial
frame in a curved spacetime. This is a rule that can be simplistically stated as ,→; or standard derivatives
extend into covariant ones. i.e. the law of conservation of particles in SR:

(nUα),α = 0, (28)

is converted in

(nUα);α = 0, (29)
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Notice that the Einstein’s principle is specific: (28) gets converted into (29).
And not into

(nUα);α = kR2, (30)

where R is the curvature scalar. Why? (3) would have physical implications: the curvature of spacetime
would create particles. There is no evidence of such creation. Einstein’s principle is backed by evidence.
The law of conservation of entropy in Special Relativity is

UαS,α = 0, (31)

But S is a scalar so this law would not change in a curved spacetime. And of course the law of conservation

Tµν,ν = 0, (32)

transforms into

Tµν ;ν = 0, (33)

with

Tµν = (ρ+ p)UµUν + pgµν , (34)

where locally gµν → ηµν in a local inertial frame.

Let’s assume that we can represent the metric of our space time by

ds2 = −(1 + 2φ)dt2 + (1− 2φ)(dx2 + dy2 + dz2). (35)

We expect that far from the source φ = −GM/r. Also we assume in all this that |mφ| � m. We can
compute the motion of a freely falling particle. If ~p = m~U , where ~U = d~x/dτ we will have:

∇~U ~U = 0 (36)

If the proper time τ is the affine parameter along the geodesic so it is τ/m and we have:

∇~p~p = 0 (37)

which is also good for photons.
Let’s look at the zero component:

m
d

dτ
p0 + Γ 0

αβp
αpβ = 0 (38)

The particle is moving with v � c so we can neglect the terms of the 4-velocity other p0:

m
d

dτ
p0 + Γ 0

00(p0)2 = 0 (39)
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and

Γ 0
00 = φ,0 +O(φ2) (40)

we get:

d

dτ
p0 = −m∂φ

∂τ
(41)

The space components give:

pαpi,α + Γ iαβp
αpβ = 0 (42)

m
dpi

dτ
+ Γ i00(p0)2 = 0 (43)

which gives:

dpi

dτ
= −mφ,jδij . (44)

The geodesic equation can be written for ~p

pαpβ;α = 0 (45)

this would give:

m
dpβ
dτ

= Γ γβαp
αpγ (46)

Which can also be written in terms of the metric:

m
dpβ
dτ

=
1

2
gνα,βpνp

α (47)

But if all the components of the metric are independent of xβ for all β, then pβ is a constant along the
particle’s trajectory.
Notice that if the metric does not depend on the time, we can find a coordinate system in which the metric
components are time independent and p0 will be conserved (this is the energy).
If we apply metric (36) to the definition of momentum we get:

~p · ~p = −m2 = gαβp
αpβ (48)

= −(1 + 2φ)(p0)2 + (1− 2φ)[(px)2 + (py)2 + (pz)2], (49)

We can solve for p0:

(p0)2 = [m2 + (1− 2φ)(p2)](1 + 2φ)−1, (50)
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where p2 refers to the space coordinates. And we still assume |φ| � 1, |p| � m, so:

(p0)2 = m2(1− 2φ) + (1− 2φ)(1− 2φ)p2 (51)

≈ m2 − 2φm2 + p2 (52)

p0 ≈ m(1− 2φ+
p2

m2
)1/2 (53)

≈ m(1− φ+
p2

m2
) (54)

We can lower the index:

p0 = g0αp
α = −(1 + 2φ)p0 (55)

= −(1 + 2φ)m(1− φ+
p2

m2
) (56)

−p0 = m+mφ+ p2/2m (57)

The terms are the rest mass, the potential energy and the kinetic energy.

A general gravitational field will not be stationary in any frame, which means that we can not define a
globally conserved energy.

We can now try looking at the result of the metric being axially symmetric (let’s say it does not depend
of an angle ψ):

pψ = gψψp
ψ ≈ gψψmdψ/dt ≈ mgψψΩ, (58)

where Ω is the angular velocity of the particle. For a nearly flat metric,

gψψ = ~eψ · ~eψ ≈ r2 (59)

in cylindrical coordinates r, ψ, z so the conserved quantity is:

pψ ≈ mr2Ω (60)

8 Isometries and Killing vectors
Symmetries of the metric are called isometries.
For example

ds2 = ηµνdx
µdxν = −dt2 + dx2 + dy2 + dz2 has several isometries.

These include translations:

xµ → xµ + aµ (61)

and Lorentz transformations:
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xµ → Λµνx
ν (62)

where Λµν is a Lorentz-transformation matrix. These are a total of ten isometries.

A systematic way of obtaining the isometries associated with a given metric are calculating the corre-
sponding Killing vectors of it. Let’s study the method.

A metric is invariant under the transformation xα → x′α if

g′ab(x
α) = gab(x

α) for all coordinates xα (63)

A transformation resulting in the above equation is called an isometry of the metric. Let’s study how gab
transforms.

gab(x) =
∂x′c

∂xa
∂x′d

∂xb
g′cd(x

′), (64)

Then using (63) if the transformation is an isometry we have

gab(x) =
∂x′c

∂xa
∂x′d

∂xb
gcd(x

′), (65)

Let’s consider the simple situation in which the coordinates change is infinitesimal. Then, and also
assuming that x′α = x′α(x)

xa → x′a = xa + εXa(x) (66)

where ε is small and arbitrary and Xa is a vector field. Differentiating we have

∂x′a

∂xb
= δab + ε

∂Xa(x)

∂xb
(67)

Using (67) in (65) and expanding in power series up to first order we get

gab(x) =(δca + ε∂aX
c)(δdb + ε∂bX

d)gcd(x
e + εXe)

=(δca + ε∂aX
c)(δdb + ε∂bX

d)[gcd(x) + εXe∂egcd + ...]

=gab(x) + ε[gad∂bX
d + gbd∂aX

d +Xe∂egab] +O(ε2). (68)

which shows that to first order in ε

gab(x)− gab(x) = 0 = gad∂bX
d + gbd∂aX

d +Xe∂egab. (69)

The right hand side is called the Lie derivative of the metric respect to the vector field ~x and it is

L ~Xgµν = Xe∂egab + gad∂bX
d + gbd∂aX

d. (70)

or

L ~Xgµν = ∇egab +∇bXa +∇aXb. (71)

9



where ∇µ is the covariant derivative calculated using gµν . But the covariant derivative of the metric is
by definition 0. So our equation defining isometries of the metric respect to a vector field ~X is or

L ~Xgµν = ∇bXa +∇aXb = 0. (72)

If

L ~Xgµν = 0, (73)

then ~X is a Killing vector of the metric and it defines an isometry of the metric. i.e. for the Minkowski
metric in standard Cartesian coordinates ∂/∂xα where α = t, x, y, z are Killing vectors.

9 Gaussian coordinates
In an arbitrary spacetime manifold (not necessarily homogeneous or isotropic) we can do the following:

1. pick an initial spacelike hypersurface SI ,

2. place an arbitrary coordinate grid (x1, x2, x3) on it,

3. look at the geodesic world lines orthogonal to it and attach to them:

4. coordinates (x1, x2, x3) = constant, x0 ≡ t = tI + τ where τ is the proper time along the world
line, with τSI = 0.

Now if we have a general ds2 = gαβdx
αdxβ since xi = constant along the geodesics then ds2 = g00dt

2

along the geodesics.

But along the geodesics ds2 = −dτ2 so g00 = −1 everywhere.
Let now ~eα be the coordinate basis vectors, and let ~u = d/dτ be the tangent vector field to the geodesics

(i.e. ~u = ~e0). But by construction at τ = 0:

~u · ~ei = ~e0 · ~ei = g0i = 0 (74)

and

d(~u · ~ei)
dτ

= ∇~u(~u · ~ei) = 0 + ~u · ∇~ei~u (75)

(the curves are geodesics so∇~u~u = 0 and ~ei and ~u form a coordinate basis ([~ei, ~u] = 0. and because:

~u · ∇~ei~u =
1

2
∇~ei(~u · ~u) = 0 (76)

and consequently ~u · ~ei = g0i = 0 everywhere and we can write the metric in the so called synchronous
form:

ds2 = −dt2 + gijdx
idxj (77)
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