
Introduction to General Relativity 2025
Lesson 4: General Relativity and Differential Geometry

Mario C Dı́az

1 Gravity and Geometry

We already discussed at the end of the First lecture the key ingredients that Einstein considered to
develop a General Theory of Relativity. He realized that he needed a geometrical formulation of a
new theory capable of including Gravitation and containing the special theory as well.

One of them was:

1. The need to include the gravitational field within the special theory of relativity. But it was
clear to him that a major role in the formulation was to be played by

2. The equivalence principle (i.e. the interchangeability or indistinguishability of the gravita-
tional force acting on a body with the acceleration experimented by a body attached to a
frame experimenting constant acceleration).

The first question leads to the second one: ”Is it conceivable that the principle of relativity also
holds for systems that are accelerated relative to each other?” One of the first startling results
is what it is called the gravitational redshift. I presented an heuristic discussion based on the
bending of Iight rays. The actual formulation by Einstein was more elaborate and I will discuss
it as presented in the book by Pais (Subtle is the Lord) following the treatment by Einstein in the
article published in 1907 in Jahrbuch der Radioaktivität und Elektronik:

Let’s consider two coordinate systems S(x, y, z, t) and Σ(ξ, η, ζ, τ) which are coincident at
one time and have v = 0. Synchronize two similar network of clocks at both reference systems
starting at t = τ = 0. Now system Σ starts moving with constant acceleration γ. Let’s introduce
now a third reference system S′(x′, y′, z′, t′) which relative to S moves with uniform velocity in
the x direction and in such a way that for a fixed instant of time t, x′ = ξ, y′ = η, z′ = ζ. And
at that time v = γt. We now go one step further and synchronize at that time all clock in S′ with
those in Σ.
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With all this:

1. Consider an interval δ so small after the coincidence of S′ and Σ that we can neglect all
effects O(δ2).

This means that we still can use the times of the clocks in the S′ (a Lorentz frame) to describe
the rates of the Σ clocks. We can then use what we have learned from Special relativity because
we’re considering small light paths. S and S′ are inertial frames and the changes in Σ are very
small yet, so we can still identify the measurements in S′ with those in Σ up to higher order effects.

2. How do clocks in two distinct space points run relative to each other?

At t = τ = 0, the two clocks were synchronous with each other and they remain for a such in-
terval of time that way. But S′ is not synchronous to them, because of the Lorentz transformations,
so then they do not remain synchronous to each other, i.e. their difference is not constant.

Let’s single out one clock in Σ and take τ and setting it to = t. We can now define simultaneity
of events 1 and 2 in Σ as

t1 −
vx1
c2

= t2 −
vx2
c2

where v = γt = γτ .

Let now 1 corresponds to the origin of Σ and 2 to a point (ξ, 0, 0) where the clock reading is
σ. And we make one last approximation: the time τ between S′ and Σ coincidence is taken such
O(τ2) effects are negligible. Then x2 − x1 = x′2 − x′1 = ξ, t1 ≡ τ and t2 ≡ σ, so that the
previous equation becomes:

t1 − t2 =
v(x1 − x2)

c2
→ σ = τ

(
1 +

γξ

c2

)
where of course v = γτ .

But if the time difference depends on the acceleration, this means that consistent with our
knowledge of physics any quantity strongly dependent on a measurement related to time, like a
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frequency, will change (actually be reduced), i.e. be shifted in frequencies to the red.

From this Einstein said:

”there are clocks which are available at different locations with distinct gravitational poten-
tial...these are the generators of spectral lines. It follows ...that light coming from the solar surface
has a longer wavelength than the light generated from the same material on earth...”

(Historically the gravitational weakening of light from massive stars was predicted by John
Michell in 1783 and Pierre-Simon Laplace in 1796. They were thinking, a la Newton, of light as
particles and they speculated with fields strong enough that light could not escape them).

2 The Principle of Equivalence

Is there a difference between inertial mass and gravitational mass?
We will assume it’s not, based historically on Galileo’s famous ”thought” experiment. But we

need to explore the meaning of each of these masses:
From ~F = mi~a when the force is gravity we have:

GmgMsource

r3
r̂ = mi~a

Compare with the Coulomb force for a particle of also mass mi and charge q in the field of another
charge Q:

ke
qQ

r3
r̂ = mi~a

Galileo’s experiment showed that mi = mg while it is very clear that mi has little to do with the
”electrical mass” q.

Galileo’s discovery can be thought as meaning that there is something intrinsically related to
gravity in the mass-energy.

2.1 Einstein’s first formulation of the Equivalence Principle

Let the frame S be at rest and let it carry a homogeneous gravitational field in the negative z
direction. Σ is a field-free frame that moves with constant acceleration relative to S in the positive
z direction. In both systems Newton’s mechanical laws are equivalent. ”One can speak as little of
the absolute acceleration of the reference frame as one can of the absolute velocity in the ordinary
-special- relativity theory” (italics from Einstein). From this“according to this theory, the equal fall
of all bodies in a gravitational field is self-evident”. With gravity we cannot attempt to describe the
trajectory followed by particles unaffected by its action. We cannot define an inertial frame at rest
on Earth. Not even a photon could help to characterize it. All will be affected. But there is a frame
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where all particles keep uniform velocity: this is a frame in fall under the action of gravity itself.
Einstein will develop a general theory of relativity by taking these frames as inertial.

2.2 Deflection of light

Einstein also realized that gravity would produce on light rays another effect, additional to the
redshift.

If the light ray is in any direction that is not completely perpendicular or perfectly aligned
with the acceleration, then the light beam would experience an additional effect. The light beam
is effectively like a sum of two beams, one in the direction of the acceleration and the other in
the perpendicular direction. Because it is made of both, the component in the direction of the
acceleration will experience a redshift, but the perpendicular part will need to adjust itself to this
change effectively feeling a pull in the direction of the acceleration. The net effect is that the
accelerated system will be tucking the light ray in its direction.

The equivalence principle states that such a thought experiment is indistinguishable from a
gravitational field: Einstein concluded that a gravitational field would bend light rays passing near
it.

3 Why curvature?

After discovering the gravitational redshift Einstein realized that a flat geometry realization for the
physical space of a real mechanics could not be consistent. He made the comment that just looking
at a uniformly rotating system of reference there will be observers who will not ”see” the ratio of
the circumference of motion to the diameter being π anymore. And we have seen that accelerated
systems could be indistinguishable from a uniform gravitational field.The picture below is showing
a rocket with a = g.

And in this other one (a = 0)the objects remain at rest with the observer.
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The objects (on a lift now standing on earth) fall on converging paths.

But if we drop the lift down a shaft.

The particles are getting closer together and this is how we know there is a gravitational field. This
is a central idea leading to a theory of relativity that needs geometry in its formulation: If we call
geodesics the paths followed by test particles, how these paths diverge or converge, i.e. how they
deviate from parallelism, is what indicates the presence of a gravitational field.
But before we go into curvature we need to have another look at tensors.

4 Vectors and one forms revisited

In the exercises using polar and spherical coordinates we worked on the transformations using
matrices and vectors. For example a coordinate transformation from a system x, y to a system ξ, η.(

∂/∂ξ
∂/∂η

)
=

(
∂ξ/∂x ∂ξ/∂y
∂η/∂x ∂η/∂y

)(
∂/∂x
∂/∂y

)
(1)

We have accordingly defined a vector as something whose components transforms according to:

V α′
= Λα

′
βV

β, (2)
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There is a more modern way of defining a vector. If we consider a scalar field φ, given coordinates
(ξ, η) it is always possible to form the derivatives ∂φ/∂ξ and ∂φ/∂η.

And we define the one-form d̃φ as the object whose components are;

d̃φ→ (∂φ/∂ξ, ∂φ/∂η) (3)

Recalling the chain rule for derivation:

∂φ

∂ξ
=
∂x

∂ξ

∂φ

∂x
+
∂y

∂ξ

∂φ

∂y
(4)

And of course there is a similar one for ∂φ/∂η But in matrix notation you have to write as
acting on row-vectors:

(∂φ/∂ξ, ∂φ/∂η) =
(
∂φ/∂x ∂φ/∂y

)( ∂x/∂ξ ∂x/∂η
∂y/∂ξ ∂y/∂η

)
(5)

and:

(Λαβ′) =

(
∂x/∂ξ ∂x/∂η
∂y/∂ξ ∂y/∂η

)
(6)

We have to use row vectors the way we did and not column vectors at the right of the matrix
because when the matrix is not symmetric, it will not work! Got to be careful as to how to use the
matrix representation! We see that d̃φ in the primed coordinates transforms:

(d̃φ)β′ = Λαβ′(d̃φ)α (7)

Notice that

Λα
′
β =

(
∂ξ/∂x ∂ξ/∂y
∂η/∂x ∂η/∂y

)
(8)

When doing Λα
′
γΛγβ′ we get:

(
∂ξ/∂x ∂ξ/∂y
∂η/∂x ∂η/∂y

)(
∂x/∂ξ ∂x/∂η
∂y/∂ξ ∂y/∂η

)
=

(
1 0
0 1

)
(9)

5 Differential Geometry

Curve: it is a mapping of an interval of the real line (i.e. a set of numbers) into a path in the plane.
This number is called a parameter. Usually called s.

ξ = f(s), η = g(s), a ≤ s ≤ b (10)
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The above equation defines a curve in the plane. If we change s to s′.

ξ = f ′(s′), η = g′(s′), a′ ≤ s′ ≤ b′ (11)

where f ′ and g′ are new functions and where a′ = s′(a) and b′ = s′(b). For mathematicians this is
a new curve. Although its image, the real thing, remains the same. We can calculate, given a scalar
field how much does it change along the curve. This derivative will be given by dφ/ds.

We can write this as dφ/ds = 〈dφ̃, ~V 〉where ~V is the vector with components are (dξ/ds, dη/ds).(
dξ/ds
dη/ds

)
=

(
∂ξ/∂x ∂ξ/∂y
∂η/∂x ∂η/∂y

)(
dx/ds
dy/ds

)
(12)

The modern view of a vector then is that it is a geometrical object which transforms with certain
properties and it is tangent to a given curve.

Similarly it can be said that it is the result of the function that evaluated on a one-form d̃φ gives
dφ/ds.

6 A summary of polar coordinates

~er = cos θ~ex + sin θ~ey, (13)

and similarly:

~eθ = −r sin θ~ex + r cos θ~ey, (14)

The basis one-forms are:

d̃θ = −1

r
sin θd̃x+

1

r
cos θd̃y (15)

and
d̃r = cos θd̃x+ sin θd̃y (16)

Notice that this basis does not have unit length.
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6.1 Metric tensor

What are the components of the metric gαβ in polar coordinates? We know that in Cartesian is:

gαβ =

(
1 0
0 1

)
gα′β′ = g(~eα′ , ~eβ′) = ~eα′ · ~eβ′ (17)

And using eqs (15) and (16):

grr = ~er · ~er = 1, gθθ = ~eθ · ~eθ = r2, grθ = ~er · ~eθ = 0 (18)

gαβ =

(
1 0
0 r2

)
(19)

And we display the result most of the time:

~dl~dl = ds2 = |dr~er + dθ~eθ|2 = dr2 + r2dθ2 (20)

The inverse is: (
1 0
0 r2

)−1
=

(
1 0
0 r−2

)
(21)

grr = 1, gθθ = 1/r2, grθ = 0 (22)

Example

If φ is a scalar field and d̃φ is the gradient, then the vector ~dφ has components:

(~dφ)α = gαβφ,β, (23)

(~dφ)r = grβφ,β = grrφ,r + grθφ,θ = ∂φ/∂r (24)

(~dφ)θ = gθrφ,r + gθθφ,θ =
1

r2
∂φ/∂θ (25)

6.2 Tensor calculus

Notice that the polar basis are not constant like the Cartesian basis vectors.

Consider the vector ~ex. In polar coordinates it has components (cos θ,−r−1 sin θ). The reason
is that they are components of a non constant basis (local basis).

Derivatives of basis vectors

8



∂

∂r
~er =

∂

∂r
(cos θ~ex + sin θ~ey) = 0 (26)

∂

∂θ
~er =

∂

∂θ
(cos θ~ex + sin θ~ey) (27)

= − sin θ~ex + cos θ~ey =
1

r
~eθ (28)

Similarly,

∂

∂r
~eθ =

∂

∂r
(−r sin θ~ex + r cos θ~ey) (29)

= − sin θ~ex + cos θ~ey =
1

r
~eθ (30)

∂

∂θ
~eθ = −r cos θ~ex − r sin θ~ey (31)

= −r~er, (32)

6.3 Derivatives of general vectors

A general vector ~V has components (V r, V θ) on the polar basis. Its derivative is,

∂~V

∂r
=

∂

∂r
(V r~er + V θ~eθ) = (33)

∂V r

∂r
~er + V r ∂~er

∂r
+
∂V θ

∂r
~eθ + V θ ∂~eθ

∂r
(34)

In component notation:
∂~V

∂r
=
∂V α

∂r
~eα + V α∂~eα

∂r
(35)

And the generalized form is:
∂~V

∂xβ
=
∂V α

∂xβ
~eα + V α ∂~eα

∂xβ
(36)

6.4 The Christoffel symbols

Since ∂~eα/∂xβ is a vector it can be decomposed as a linear combination of basis vectors.

∂~eα
∂xβ

= Γµ
αβ~eµ (37)

The interpretation is:
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1. α gives the basis vector being differentiated;

2. β gives the coordinate respect to which it is being differentiated.

3. µ denotes de component resulting in this array.

∂

∂r
~er = 0⇒ Γµ

rr = 0 for all µ, (38)

∂

∂r
~er =

1

r
~eθ ⇒ Γ r

rθ = 0 ,Γ θ
rθ =

1

r
(39)

∂

∂r
~eθ =

1

r
~eθ ⇒ Γ r

θr = 0 ,Γ θ
θr =

1

r
(40)

∂

∂θ
~eθ = −r~eθ ⇒ Γ r

θθ = −r ,Γ θ
θθ = 0 (41)

(37) can be cast in the language of the Christoffel symbols, using (38).

∂~V

∂xβ
=
∂V α

∂xβ
~eα + V αΓµ

αβ~eµ (42)

Relabeling to factor out ~eµ
∂~V

∂xβ
= (

∂V α

∂xβ
+ V µΓα

µβ)~eα (43)

Then if ∂V
α

∂xβ
= V α

,β the derivative defined in (47) will be denoted, the covariant derivative:

V α
;β = V α

,β + V µΓα
µβ (44)

Notice that now ∂V α

∂xβ
is a

(
1
1

)
tensor, called the covariant derivative of ~V

(∇~V )αβ = V α
;β (45)

On a cartesian basis the components are just V α
β .

What about a scalar? A scalar does not depend on the basis vectors so its covariant derivative
is the regular one.
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6.5 What is the meaning of covariant differentiation?

The vector field Xa(x) has coordinates xa at P . and coordinates xa + δxa at another point Q
near P . Then

Xa(x+ δx) = Xa(x) + δxa∂bX
a (46)

We can denote the second term by δXa

δXa(x) = δxbXa
,b = Xa(x+ δx)−Xa(x), (47)

which is not tensorial in nature because it evaluates the difference between tensors at two different
points.
We will try to define a ”tensorial” derivative by introducing a vector at Q which in ”some sense” is
parallel to Xa.

Since xa+δxa is close to xa we can assume that the vector only differs from Xa(x) by a small
amount, which we denote δ∗Xa(x).

And we will make the difference δXa(x)− δ∗Xa(x) a tensor:

Xa(x) + δXa(x)− [Xa(x) + δ∗Xa(x)] = δXa(x)− δ∗Xa(x) (48)

If we want δ∗Xa(x)] to vanish wherever Xa(x) or δxa does it, we assume it to be linear in both
Xa(x) and δxa.

δ∗Xa(x)] = −Γ a
bc(x)Xb(x)δxc (49)

Now we define the covariant derivative:

∇cXa = lim
δxc→0

1

δxc
{Xa(x+ δx)− [Xa(x) + δ∗Xa(x)]} (50)
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Which using (47) and (50) becomes:

∇cXa = Xa
,c + lim

δxc→0

1

δxc
Γ a

bd(x)Xb(x)δxd (51)

And using that

lim
δxc→0

δxc

δxd
=
∂xc

∂xd
= δxcd

we finally get

Xa
;c = Xa

,c + Γ a
bd(x)Xb(x)δxdc = Xa

,c + Γ a
bc(x)Xb(x) (52)

6.6 Divergence and Laplacian

Divergence is a scalar.

Just from the definitions:
V α

,α ≡ V β′
;β′ (53)

It is easy to see how this is implemented working in polar coordinates:

V α
;α = V α

α + Γα
µαV

µ (54)

Γα
rα = Γ r

rr + Γ θ
rθ = 1/r (55)

Γα
θα = Γ r

θr + Γ θ
θθ = 0 (56)

And then we have:

V α
;α = V r

,r + V θ
,θ +

1

r
V r (57)

=
1

r

∂

∂r
(rV r) +

1

r

∂

∂θ
V θ (58)

If we apply this to the gradient of a scalar:

∇ · ∇φ ≡ ∇2φ =
1

r

∂

∂r
(r
∂φ

∂r
) +

1

r2
∂2φ

∂θ2
(59)

we get the Laplacian in polar coordinates.
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6.7 Derivatives for all tensors

One forms

φ is a scalar, so d̃φ = ∇φ. i.e. if we look at the formula (13) -which is the same one as (5.19)
on page 121 of Schutz book- we have:

dφ/ds = 〈dφ̃, ~V 〉 = ∇φ · ~V = φ,αV
α (60)

where s is a parameter used to define a given curve, φ is a scalar field and∇φ is the gradient of the
scalar field and ~V is a vector tangent to the curve.

The question now is what is the covariant derivative of a one-form d̃φ, i.e. what is∇cXa

We can do the following trick: let’s calculate the covariant derivative of φ,αV α and applying
the Leibniz rule:

(φ,αV
α);β = (φ,αV

α),β = φα,βV
α + φ,αV

α
,β (61)

Now we use our result from (48) solving for V α
,β and get

(φ,αV
α),β = φα,βV

α + φ,α(V α
;β − Γα

µβV
µ) (62)

Rearranging the indices in the last term after doing the factor multiplication we get:

(φ,αV
α);β = (φα,β − φ,µΓµ

αβ)V α + φ,αV
α
;β (63)

We can now identify in the parenthesis of the right hand side the covariant derivative of the
∇φ = φ,α:

φα;β = φα,β − φ,µΓµ
αβ (64)

Notice the reversal in the utilization of the sign in front of the Christoffel symbol as opposed to
the covariant derivative of a vector field.

So for a general
(
m
n

)
tensor the covariant derivative will be given by:

∇αT β...δ... = T β...δ... ,α
+ Γ β

ωαT
ω...
δ... + · · · − Γ γ

δαT
β...
γ... − · · · (65)

6.8 What about the metric?

How is the metric fitting in all this?

Remember that to get a one-form from a given vector we need a metric. There is an easy way
to introduce the metric if we remember that we are requiring that tensorial equations transform a
covariant index to a contravariant one with the metric, i.e.:

Vα;β = gαµV
µ
;β (66)
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We can calculate the Christoffel symbols from the metric, the fact that it is a rank
(

0
2

)
tensor

and some properties that are specific to the ”manifolds” we will be studying. These properties are
the following:

1. Γλ
µν = Γλ

νµ

2. ∇ρgµν = 0

The first one indicates that the torsion tensor, which is defined below, is zero.

T λµν = Γλ
µν − Γλ

νµ = 0

.
This means the metric is torsion free. The second one is called metric compatibility. The con-
nection is metric compatible if the covariant derivative of the metric with respect to that connection
is everywhere zero.

There are a few of results which can obtained from the above ones which are nice:

1. ∇λεµνρσ = 0

2. ∇ρgµν = 0

3. gµλ∇ρV λ = ∇ρV µ

Now using these properties:

∇ρgµν = gµν,ρ − Γλ
ρµgλν − Γλ

ρνgµλ = 0 (67)

∇µgνρ = gνρ,µ − Γλ
µνgλρ − Γλ

µρgνλ = 0 (68)

∇νgρµ = gρµ,ν − Γλ
νρgλµ − Γλ

νµgρλ = 0 (69)

If we now do (69)+(70) -(68), and use the symmetry of the connection we get:

gµν,ρ − gνρ,µ − gρµ,ν + 2Γλ
µνgλρ = 0 (70)

Multiplying by gσρ we solve for the connection:

Γσ
µν =

1

2
gσρ(gνρ,µ + gρµ,ν − gµν,ρ) (71)

Please store (71) in your permanent memory!
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6.9 The nature of the Christoffel symbols

The Christoffel symbols are defined by (55) and by (74).

Xa
;c = Xa

,c + Γ a
bc(x)Xb(x) (72)

If we ask that Xa
;c transforms as a tensor

(
1
1

)
under a coordinate transformation, we get:

Γ ′
a
bc =

∂x′a

∂xd
∂xe

∂x′d
∂xf

∂x′c
Γ d

ef −
∂xd

∂x′b
∂xe

∂x′c
∂2x′a

∂xd∂xe
(73)

This shows a transformation law which is linear but inhomogeneous. A quantity which trans-
forms like Γ a

bc is called an affinity or affine connection or in the gobbledygook of relativists, just
connection .

6.10 Non coordinate basis

What is a non-coordinate basis? Given a coordinate system Xα we want to use {∂/∂xα} as a
basis of vectors. Any linearly independent set of vector fields could be used, but not all of them
are derivable from coordinate systems. Although ∂/∂xα and ∂/∂xβ may commute, two arbitrary
vectors ~V = d/dλ and ~W = d/dη may not: Let’s use that d/dλ = (dxα/dλ)∂/∂xα

d

dλ

d

dµ
− d

dµ

d

dλ
= V αW β

,α
∂

∂xβ
−W βV α

,β
∂

∂xα
(74)

which can eventually be written:

d

dλ

d

dµ
− d

dµ

d

dλ
=

(
V αW β

,α −WαV β
,α

) ∂

∂xβ
(75)

6.11 Lie bracket

Notice that there is a double sum in α and β. So the commutator:

[~V , ~W ] =

[
d

dλ
,
d

dµ

]
≡ d

dλ

d

dµ
− d

dµ

d

dλ
(76)

is a vector field whose components don’t vanish in general. This vector field is called a Lie
Bracket.
This means that if these are two elements of a basis and their Lie bracket does not vanish, they will
not be expressible as derivatives with respect to any coordinates. A basis like this is called a non-
coordinate basis. The existence of these integrability condition (or commutativity of its derivatives)
is key to the existence of a coordinate basis associated to the vector fields. Example: just compare
polar coordinates ( ∂∂r ,

∂
∂θ ) which is a coordinate basis with an orthonormal basis derived from it

(i.e. one where the basis vectors are such that the determinant of the transformation matrix is also
1 and not r).

15


