
Introduction to General Relativity 2025
Lesson 2: A primer on Tensor Algebra
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Glossary and keywords

Transformation of coordinates. Contravariant and covariant transformations. One-forms. Ein-
stein’s convention. Operations with tensors.

Contravariant vectors

What is a vector? How do vectors transform? A vector indicates a point in space which exists
independently of our description of it. We need to use a reference system to describe it. But when
doing so we make clear information about that point and allow other observers to describe the same
point from their own reference systems. A vector could be also a function of time, indicating the
displacement of an object in space. Similarly the trajectory of an object in space is independent of
us, but we need a reference system to describe it.

A displacement vector from two different coordinate systems.

The question arises then: how are the coordinates of this displacement in the two systems related?
If we think that the displacement is an infinitesimal one then the coordinates of it in the system X
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are:

dXi = [dX1, dX2, ..., dXn] (1)

where n is the dimension of our space. If we look at the same displacement described from the Y
system we have:

dY i = [dY 1, dY 2, ..., dY n] (2)

We learn from calculus that these coordinates are related by

dY i =
∑
j

∂Y i

∂Xj
dY j (3)

We will follow Einstein’s convention and eliminate the
∑

symbol when indices are repeated. We
understand that repeated indices indicate a sum over them.

dY i =
∂Y i

∂Xj
dY j (4)

Notice that, i.e. in two dimensions (3) or (4) can be written as vector equation in this manner:(
dY 1

dY 2

)
=

(
∂Y 1/∂X1 ∂Y 1/∂X2

∂Y 2/∂X1 ∂Y 2/∂X2

)(
dX1

dX2

)
(5)

||∂Y i/∂Xj || is the matrix of the transformation of coordinates. Equation (5) is the definition of
how a contravariant vector transforms. We can define a vector as a quantity V described in a coor-
dinate system Xi that when a different coordinate system X ′i is used to describe it, it transforms:

(V ′)i =
∂(X ′)i

∂Xj
V j (6)

These vectors are called contravariant vectors.

Covariant vectors

Let’s examine now another type of vector. The gradient of a scalar function is a vector but we will
see that it transforms differently from the way contravariant vectors like the displacement vector
transform. If we have a scalar function of the coordinates Φ(Xi) the gradient will be:

~W = ∇Φ = [∂Φ/∂x1, ∂Φ/∂x2, ..., ∂Φ/∂xn] (7)

where n is the dimension of our space. How do the coordinates of the gradient transform under a
coordinate transformation to a system (X ′)i? The calculus chain rule shows it clearly:

∂Φ

∂(x′)i
=
∂Φ

∂xj
∂xj

∂(x′)i
(8)
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or

(W ′)i = Wj
∂xj

∂(x′)i
(9)

remember that there is an implicit sum in the repeated indices. A covariant vector transforms with
the inverse of the transformation matrix. Contravariant indicates that if we change the unit vectors
by a factor α the components of the vector in that base will changed by a factor 1/α. In the case of
a covariant vector its components will change just in the same factor α, co-variantly.

Vectors, Tensors and Transformations

Example 1
Find the components of the tangent vector to the curve consisting of a circle of radius a centered at
the origin in Cartesian and polar coordinates:

Solution

(xa)→ (x′a) where xa are Cartesian coordinates gives x′a

R = (x2 + y2)1/2

φ = tan−1(y/x)

Then the matrix of coordinate transformations is(
∂x′a

∂xb

)
=

(
cosφ sinφ

− sinφ/R cosφ/R

)
and

Xa =
dxa

dφ
= (−a sinφ, a cosφ),

X ′a =

(
cosφ sinφ

− sinφ/R cosφ/R

) ∣∣∣∣
R=a

·
(
−a sinφ
a cosφ

)
X ′a =(0, 1)

What about dx
a

dR ?

Xa =
dxa

dR
= (cosφ, sinφ),
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and

X ′a =

(
cosφ sinφ

− sinφ/R cosφ/R

)
·
(

cosφ,
sinφ

)
=X ′a = (1, 0)

Example 2

Let now the (xa) be Cartesian coordinates and (x′a) plane polar ones.

a) Find X ′a if Xa = (1, 0).

X ′a =

(
cosφ sinφ

− sinφ/R cosφ/R

)
·
(

1
0

)
X ′a =(cosφ,− sinφ/R) (10)

b) Find expressions for ∂/∂x, ∂/∂y, ∂/∂R, ∂/∂φ

We remember that basis vectors transform with the inverse of the transformation that relates
vectors in two coordinate systems. If we want to get (∂/∂x, ∂/∂y) then:(

∂/∂x
∂/∂y

)
=

(
cosφ − sinφ/R
sinφ cosφ/R

)
·
(
∂/∂R
∂/∂φ

)
And we get:

∂

∂x
= cosφ

∂

∂R
− sinφ

R

∂

∂φ

∂

∂y
= sinφ

∂

∂R
+

cosφ

R

∂

∂φ
,

∂

∂R
=

x

(x2 + y2)1/2

∂

∂x
+

y

(x2 + y2)1/2

∂

∂y

∂

∂φ
= −y ∂

∂x
+ x

∂

∂y

c) Express the vector field ~A = (1, 0) in terms of the basis (i.e. as an operator):

Xa∂a =
∂

∂x

X ′a∂′a = cosφ
∂

∂R
− sinφ

R

∂

∂φ
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d) If Y a = (0, 1) and Za = (−y, x) find Y ′a, Z ′a:

Y ′a = (sinφ, cosφ/R),

Z ′a =

(
cosφ sinφ

− sinφ/R cosφ/R

)
·
(
−y
x

)
And of course the vectors in the two systems are

Y =
∂

∂y
= sinφ

∂

∂R
+

cosφ

R

∂

∂φ
,

Z = −y ∂
∂x

+ x
∂

∂y
=

∂

∂φ

The scalar product

Let’s consider the representation of two vectors ~A and ~B on the vector basis in some frame O:

~A = Aα~eα, ~B = Bβ~eβ

The scalar product is:
~A · ~B = (Aα~eα) · (Bβ~eβ)

which can be put:
~A · ~B = AαBβ(~eα · ~eβ), (11)

We define the metric tensor:
~A · ~B = AαBβηαβ, (12)

The numbers ηαβ are called the components of the metric tensor. Comments:

1. metric means that the quantity is associated with giving a ”notion” of measure (the ”length”
of a scalar product).

2. tensor means that it is a quantity with special transformation properties.

3. it is important to understand the ”meaning” of the double summation.

One way of understanding it in the language of matrices is seeing this:

~A · ~B =
(
A0 A1 A2 A3

)
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




B0

B1

B2

B3

 (13)
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When performing the double summation you have to be careful, i.e.:

~A · ~B = A0Bβη0β +A1Bβη1β +A2Bβη2β +A3Bβη3β

and for each repeated β subindex there is a sum to do where β also runs from 0 to 3.

Definition of tensors

A tensor of type
(

0
N

)
is a function of N vectors, which is linear in each of its N arguments. i.e.

g is a tensor of type
(

0
2

)
.

g( ~A, ~B) := ~A · ~B (14)

and
g(α ~A+ β ~B, ~C) = αg( ~A, ~C) + βg( ~B, ~C) (15)

A function is a tensor of type
(

0
0

)
.

The
(

0
1

)
tensors: one-forms

These tensors are generally called covectors. One forms are denoted p̃ to differentiate them from
vectors like ~A. A little bit more rigorous definition of one forms would be: they are linear, real
valued functions of vectors. A one form ω̃ at a point P in a given space (manifold) associates with
a vector ~V at P (notice this P again) a real number, we call ω̃(~V ).

Forms follow these rules:

s̃ = p̃+ q̃, (16)

r̃ = αp̃, (17)

s̃( ~A) = p̃( ~A) + q̃( ~A), (18)

r̃( ~A) = αp̃( ~A), (19)

The set of one forms satisfies the axioms for a vector space.
These axioms are 1) Associativity of addition, 2) Commutativity of addition, 3) Identity element
of addition, 4) Inverse elements of addition 5) Distributivity of scalar multiplication with respect
to vector addition, 6) Distributivity of scalar multiplication with respect to field addition, 7) Com-
patibility of scalar multiplication with field multiplication, and 8) Identity element of scalar multi-
plication.
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Components of p̃ are:
p̃α := p̃(~eα), (20)

p̃( ~A) = p̃(Aα~eα), = Aαp̃(~eα) (21)

p̃( ~A) = Aαp̃α (22)

Notice that contraction does not involve any other tensor or rule, i.e.

p̃( ~A) = A0p0 +A1p1 +A2p2 +A3p3

while two vectors can not make a scalar without the help of the metric tensor.
Example:

The row vector (−4, 9, 1). Why?

(
−4, 9, 1

)
:

 x
y
z

→ (
−4, 9, 1

) x
y
z


= −4x+ 9y + z,

What are the components of p̃ on a basis {~eβ̄}

pβ̄ := p̃(~eβ̄) = p̃(Λαβ̄~eα) = Λαβ̄ p̃(~eα)

= Λαβ̄ p̃α

Components of one-forms transform as basis vectors do and opposite to component of vectors
(using the inverse transformation).

This means that Aαpα is frame independent. (Exercise: prove it).

Basis of one-forms
We want a set of {ω̃α, α = 0, ..., 3} ”dual” to {~eα} such that,

p̃ = pαω̃
α. (23)

Remembering eq (12) we see from (13) that:

p̃( ~A) = pαω̃
α( ~A)

= pαω̃
α(Aβ~eβ)

= pαA
βω̃α(~eβ).

This can only be equal to pαAα if
ω̃α(~eβ) = δαβ (24)

7



These components can be written:

ω̃0 −→
O

(
1 0 0 0

)
(25)

ω̃1 −→
O

(
0 1 0 0

)
(26)

ω̃2 −→
O

(
0 0 1 0

)
(27)

ω̃3 −→
O

(
0 0 0 1

)
(28)

And
ω̃ᾱ = Λᾱβω̃

β (29)

The one form can be seen as a series of surfaces.The value of a 1-form on a vector can be pictured
as the number of surfaces the arrow perforates.
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dφ
dτ = d̃φ~U with d̃φ→

O
(∂φ∂t ,

∂φ
∂x ,

∂φ
∂y ,

∂φ
∂z )

We can see that d̃φ is a consistent definition with the way one-forms transform:

d̃φᾱ = Λβαd̃φβ (30)

∂φ

∂xᾱ
=

∂φ

∂xβ
∂xβ

∂xᾱ
(31)

(21) means d̃φᾱ = ∂xβ

∂xᾱ d̃φβ , but xβ = Λβᾱx
ᾱ, so

∂xβ

∂xᾱ
= Λβᾱ (32)

This is a fundamental identity and shows that the gradients transform with the inverse.
Derivatives and notation

∂φ

∂x
:= φ,x

In general
∂φ

∂xα
:= φ,α (33)

Notice that:
xα,β ≡ δαβ,
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If we think of a generic 1-form basis d̃xα we can remember of:

d̃f =
∂f

∂xα
d̃xα

which is showing an “operator” of the form:

d̃ = (
∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z
)


d̃t

d̃x

d̃y

d̃z


This suggests that:

d̃xα := ω̃α (34)

Normal one-forms

d̃f is normal to surfaces of constant f.

d̃f = 0 = (
∂f

∂t
,
∂f

∂x
,
∂f

∂y
,
∂f

∂z
)(d̃t, d̃x, d̃y, d̃z)

Which means that d̃xα is orthogonal to the vectors tangent to the surface at the points where f(~x)
is constant.

The
(

0
2

)
tensors

fαβ := f(~eα, ~eβ) (35)

Once we know these values it is easy to find them for arbitrary vectors:

f( ~A, ~B) = f(Aα~eα, B
β~eβ)

= AαBβf(~eα, ~eβ)

= AαBβfαβ

Can we write it in terms of ”two forms” basis?, i.e. f = fαβω̃
αβ for some ω̃αβ

But then
fµν = f(~eµ, ~eν) = fαβω̃

αβ(~eµ, ~eν)
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and this would imply:
ω̃αβ(~eµ, ~eν) = δαµδ

β
ν (36)

But from what we have learned before:

ω̃αβ(~eµ, ~eν) = ω̃α(~eµ)ω̃β(~eν)

So we have something special as a basis:

ω̃αβ = ω̃α
⊗

ω̃β (37)

f = fαβω̃
α
⊗

ω̃β (38)

Symmetries
We will say that f is symmetric if:

f( ~A, ~B) = f( ~B, ~A) ∀ ~A, ~B, (39)

which implies:
fαβ = fβα (40)

An arbitrary
(

0
2

)
tensor h can have associated a symmetric h(s):

h(s)( ~A, ~B) =
1

2
h( ~A, ~B) +

1

2
h( ~B, ~A). (41)

which in components:

h(s)αβ
=

1

2
(hαβ + hβα)

And there is a special notation for it:

h(αβ) :=
1

2
(hαβ + hβα) (42)

We will say that f is antisymmetric if:

f( ~A, ~B) = −f( ~B, ~A) ∀ ~A, ~B, (43)

which implies:
fαβ = −fβα (44)

An arbitrary
(

0
2

)
tensor h can have associated a antisymmetric h(A):

h(A)( ~A, ~B) =
1

2
h( ~A, ~B)− 1

2
h( ~B, ~A). (45)
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which in components:

h(A)αβ
=

1

2
(hαβ − hβα)

And there is a special notation for it:

h[αβ] :=
1

2
(hαβ − hβα) (46)

Notice this important result:

hαβ =
1

2
(hαβ + hβα) +

1

2
(hαβ − hβα) = h(αβ) + h[αβ] (47)

The metric tensor g is so far symmetric:

g( ~A, ~B) = g( ~B, ~A) (48)
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Mapping vectors into one-forms
Each vector has its soulmate, i.e. a one-form associated. The metric does the”mapping”.

g(~V , ) := Ṽ ( ), (49)

Ṽ ( ~A) := g(~V , ~A) = ~V · ~A. (50)

What is Ṽ ?, or what are its components?

Vα := Ṽ (~eα)

= ~V · ~eα = ~eα · ~V
= ~eα · (V β~eβ)

= (~eα · ~eβ)V β

But we know what (~eα · ~eβ) is:
Vα = ηαβV

β (51)

Example

V0 = V βηβ0

= V 0η00 + V 1η10 + · · ·
= V 0(−1) + 0 + 0 + 0

= −V 0

V1 = V βηβ1

= V 0η01 + V 1η11 + · · ·
= +V 1

The inverse mapping
There is an inverse to ηαβ which we call ηαβ . And we will use it to find Aα when given Aα.

Aα := ηαβAβ (52)

which is consistent with:
Aβ = ηβαA

α (53)

ηαβ is uniquely defined by:
ηβαηαγ = δβγ (54)

Exercise: find η00

Why all this fuss about forms and vectors?
The duality is manifest when we deal with a metric space. The metric makes vectors and one

forms different. In Euclidean space duality is meaningless, because one-forms and vectors would
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have the same components. Rigorous mathematical definition for dual space: Any vector space, V,
has a corresponding dual vector space (or just dual space) consisting of all linear functionals on V.

In special relativity it works the way we just learned it. The concept is useful in many other
areas of physics, including Quantum Mechanics and Solid State physics. The Fourier transform
can be formulated mathematically to provide a dual representation of a function of time.

Magnitudes of one-forms

p̃2 = ~p2 = ηαβp
αpβ (55)

Of course:

p̃2 = ηαβpαpβ (56)

They can be as vectors spacelike, timelike or null.

The
(
M
N

)
tensors

Vectors are not really privileged. They can be seen are linear functions of one-forms into real
numbers.

~V (p̃) ≡ p̃(~V ) ≡ pαV α ≡ 〈p̃, ~V 〉 (57)(
M
0

)
tensors are linear functions of M one-forms into real numbers.

A simple
(

2
0

)
is ~V ⊗ ~W . Acting on forms would give: ~V (p̃) ~W (q̃) = V αpαW

βqβ . A basis

for
(

2
0

)
tensors is ~eα ⊗ ~eβ

NOTE:
(
M
0

)
tensors have their indices as superscripts.
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(
M
N

)
tensors

An
(
M
N

)
tensor is a linear function of M one-forms and N vectors into real numbers. An(

M
N

)
tensor will have M indices up and N indices down.

up→ contravariant, down→ covariant.

Raising and lowering indices
The metric maps a vector ~V into a one-form Ṽ . It also generalizes this into the following: a

metric maps an
(
N
M

)
tensor into an

(
N − 1
M + 1

)
tensor. Similarly the inverse maps an

(
N
M

)
tensor into and a

(
N + 1
M − 1

)
tensor.

For example a
(

2
1

)
tensor is mapped into a

(
1
2

)
tensor:

Tαβγ := ηβµT
αµ
γ (58)

Or
Tα

β
γ := ηαµT

µβ
γ (59)

Tαβγ := ηγµTαβµ (60)

Also (important)
ηαβ ≡ ηαµηµβ (61)

Differentiation of tensors
T = Tαβω̃

β ⊗ ~eα
dT

dτ
= lim

∆τ→0

T(τ + ∆τ)−T(τ)

∆τ
(62)

dT

dτ
= (

dTαβ
dτ

)ω̃β
⊗

~eα (63)
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where dTαβ/dτ = Tαβ,γU
γ Then

dT/dτ = (Tαβ,γω̃
β
⊗

~eα)Uγ (64)

from where we get:

∇T := (Tαβ,γω̃
β
⊗

ω̃γ
⊗

~eα) (65)

This tensor is called the gradient of T and dT/dτ = ∇~UT where

∇~UT→ {T
α
β,γU

γ} (66)
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