

---

# PHYS 5393

## Spring 2026

# Introduction to the General Relativity Theory of Gravitation

**Mario C. Díaz**

*Phone: (956) 8826690, mobile (956)-5722614. E-Mail: mario.diaz@utrgv.edu, Office location: BINAB 2.126, Office hours: Monday: 1-2 PM 3-4 PM Tuesday 12-1 PM, Thursday 1- 3PM and by appointment, Course webpage: <http://www.mariodiaz.org/general-relativity.html>*

---

## Course Information

**Meeting Days:** Tuesday & **Time:** 2:00 PM - 4:45 PM.

**Location:** BINAB 2.124

**Course Modality:** (TR) in person with a few zoom classes throughout the semester.

**C**ourse Description: This is a beginning graduate/advanced undergraduate level course that introduces the student to Einstein's theory of general relativity and other topics in the field of gravitation. Each item in each chapter of the layout presented below can be considered a topic knowledge that constitutes a major course requirement.

## 1 Learning Objectives for this course

The beauty of General Relativity resides in the relatively simple fundamental concepts upon which it is built. But the price paid for this simplicity is the rather complex and elaborate mathematical formalism that it is needed to describe it. This Math resides in the realm of differential geometry. This course will assume no previous knowledge of differential geometry but I will introduce all the required elements (Riemannian geometry and tensor analysis) needed to understand and describe the physical nature of gravitation. The Topics and areas to be covered will include the Principle of Equivalence, physics on curved manifolds and Einstein's equations of General Relativity. I will

also present exact solutions of Einstein's equations, and introduce and discuss, as the most significant among them, the Schwarzschild and Kerr solutions. I will also cover briefly topics in black hole physics and cosmology. The course will end with a discussion of gravitational radiation and its detection. Ours are quite interesting times: gravitational waves, one of the most elusive physical phenomenon speculated about in the history of physics, were discovered in 2015 starting a completely new era in astronomy. Our current status on the understanding of the evolution of the universe and its structure at large scale are depending on a mysterious so called dark matter as well as an equally perplexing dark energy. With gravitational waves all three of them are deeply related to Einstein's theory of gravitation. This course will give the student an appreciation of the theory and the capacity to delve deeper in these areas of current research.

**WARNING:** the topics in the layout below are tentative. There is no guarantee that we will be able to cover all of them. I will prioritize in depth understanding by the majority of the students over amount of topics covered. Prerequisites: Knowledge of Classical Mechanics, Electromagnetic Theory, Mathematical Methods of Physics, Modern Physics.

## 2 Course layout

1. Special relativity.  
Lorentz transformations. Mathematical properties of

Minkowski spacetime. Relativistic mechanics. The twin paradox. The Doppler effect. Vector algebra in 4-dimensions. Four-velocity and four-momentum.

## 2. Tensor algebra.

Manifolds and coordinates. Tensor fields. Tensor calculus. Differential forms and index lowering and raising. Perfect fluids in special relativity. Dust. Perfect fluids and general fluids.

## 3. Differential Geometry.

Introduction to curvature and non-Euclidean geometries. Christoffel symbols and non-coordinate basis. Curved manifolds. Riemannian manifolds. Covariant differentiation. Parallel transport and geodesics. Curvature tensor. Bianchi identities, Ricci and Einstein tensors.

## 4. Physics in curved spacetimes.

Einstein field equations. Weak field limit. Advance of the perihelion of Mercury. Bending of light.

## 5. Gravitational radiation.

Propagation of gravitational waves. Generation of gravitational waves. Detection of gravitational waves. Energy carried away by gravitational waves.

## 6. The Schwarzschild solution.

Properties. Experimental tests of relativity. Black Holes. Spherical solutions for stars. Static perfect fluid Einstein equations.

## 7. Cosmology

Newtonian Cosmology. The cosmological principle. Friedman's equation. Hubble's law in relativistic cosmology. Cosmological models. Inflation. Quantum Gravity.

## 3 Evaluation

Evaluation will consist on the following: Attendance: it is not required. But absences will be considered a lack of engagement and a cavalier attitude indicative of disdain for the course.

Assigned Homework, although will not be graded will count 40% towards the final grade. There will be three exams, each one counting 20% of the final grade. Exams schedule: 1st exam Tuesday February 24, 2nd exam March 31, Final exam May 12.

## 4 Bibliography, a.k.a. Required reading

**Course book:** no “official” course book. No “required reading”, save the notes, but if you don’t read you will not learn, and if you want to understand at a competitive level it will be good to read

and consult references often. I will be providing pdfs of lecture notes regularly throughout the semester.

### Reference Books

A quite useful one is A first course in General Relativity 2nd edition, there is a 3rd edition now. Bernard Schutz Cambridge

A recently published book who particularly excels at describing the philosophical and conceptual aspects of GR is:

General Relativity, the essentials  
Carlo Rovelli, Cambridge, 2021.

Also quite recent is:

General Relativity, The theoretical minimum by Leonard Susskind and André Cabannes. Basic books, 2023.

An excellent book:

Spacetime and Geometry: An Introduction to General Relativity  
Sean Carroll

Excellent to discuss and focus on the physics more than the math:

Gravity: An Introduction to Einstein's General Relativity  
James B. Hartle

### Additional

Introducing Einstein's Relativity, Ray D'Inverno, Oxford, 1996.

The Classical Theory of fields, Landau, L.D. and Lifshitz, 1971, Oxford.

Problem Book in relativity and gravitation, Lightman, A.P. Press, W.H., Price, R.H. and Teukolsky, S.A., 1975, Princeton U.P.

An Introduction to general Relativity and Cosmology, Jerzy Plebanski & Andrzej Krasinski, CUP.

Einstein's Space-Time, Rafael Ferraro, Springer.

Introduction to General Relativity, JD Walecka  
Gravitation, Misner C.W. Thorne, K.S. and Wheeler, J.A., 1973, Freeman.

Gravitation and Space-Time, Ohanian Y.H. and Ruffini, R., 1994, Norton.

General relativity, and introduction to the gravitational field, Stephani, H., 1982 Cambridge U.P.

Schutz, Geometrical Methods of mathematical Physics, 1980, Cambridge U.P.

General relativity, Wald, R.M. , 1984, University of Chicago Press.

Gravitation and Cosmology, Weinberg, S. 1972, Wiley, New York.

### **University Policy Statements**

#### **SEXUAL MISCONDUCT AND MANDATORY REPORTING**

In accordance with UT System regulations, your instructor is a “Responsible Employee” for reporting purposes under Title IX regulations and so must report any instance of sexual misconduct, which includes sexual assault, stalking, dating violence, domestic violence, and sexual harassment to the Office of Title IX and Equal Opportunity (otixeo@utrgv.edu). More information can be found on the OTIXEO website. If students, faculty, or staff would like confidential assistance, or have questions, they can contact OAVP (Office for Advocacy & Violence Prevention).