INTRODUCTION TO GENERAL RELATIVITY AND GRAVITATION

Homework 4 2025

Exercise 1.

Explain why a uniform external gravitational field would raise no tides on Earth.

Exercise 2.

Given in the frame \mathcal{O} the vectors $\vec{A}=(2,1,1,0), \vec{B}=(1,2,0,0)$ $\vec{C}=(0,0,1,1)$ and $\vec{D}=(-3,2,0,0).$

(a) find the components of \tilde{p} if

$$\tilde{p}(\vec{A}) = 1, \, \tilde{p}(\vec{B}) = -1, \, \tilde{p}(\vec{C}) = -1 \text{ and } \tilde{p}(\vec{D}) = 0;$$

(b) find the value of $\tilde{p}(\vec{E})$ for $\vec{E} = (1, 1, 0, 0)$

Exercise 3.

(a) Given the components of a tensor $M^{\alpha\beta}$ as the matrix

$$\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 2 \\
2 & 0 & 0 & 1 \\
1 & 0 & -2 & 0
\end{array}\right)$$

find:

- (i) the components of the symmetric tensor $M^{(\alpha\beta)}$ and the antisymmetric tensor $M^{[\alpha\beta]}$;
- (ii) the components of $M^{\alpha}{}_{\beta}$;
- (iii) the components of M_{α}^{β} ;
- (iv) the components of $M_{\alpha}\beta$.
- (b) For the tensor whose components are $M^{\alpha}{}_{\beta}$, does it make sense to speak of its symmetric and antisymmetric parts? If so, define them. If not, say why.

Exercise 4.

(a) Show that the coordinate transformation $(x, y) \to (\zeta, \eta)$ with $\zeta = x$ and $\eta = 1$ violates

$$\det \left(\begin{array}{cc} \frac{\partial \zeta}{\partial x} & \frac{\partial \zeta}{\partial y} \\ \frac{\partial \eta}{\partial x} & \frac{\partial \eta}{\partial y} \end{array} \right) \neq 0$$

(b) Are the following coordinates transformations good ones? Compute the jacobian and list any points where the transformations fail.

(i)
$$\psi = (x^2 + y^2)^{1/2}$$
, $\eta = \arctan(y/x)$,

(ii)
$$\psi = \ln(x)$$
, $\eta = y$,

Exercise 5.

Calculate all elements of the transformation matrices $\Lambda^{\alpha'}{}_{\beta}$ and $\Lambda^{\mu}{}_{\nu'}$ for the transformation from Cartesian (x, y) - the unprimed indices - to polar (r, θ) - the primed indices.

Exercise 6.

Let $f = x^2 + y^2 + 2xy$, and in Cartesian coordinates $\vec{V} = (x^2 + 3y, y^2 + 3x)$, and $\vec{W} = (1, 1)$.

- (a) Compute f as a function of r and θ , and find the components of \vec{V} and \vec{W} on the polar basis, expressing them as functions of r and θ .
- (b) Find the components of f in Cartesian coordinates and obtain them in polars (i) by direct calculation in polars, and (ii) by transforming components from Cartesian.
- (c) (i) Use the metric tensor in polar coordinates to find the polar components of the one-forms $ilde{V}$ and \tilde{W} associated with \vec{V} and \vec{W} . (ii) Obtain the polar components of \tilde{V} and \tilde{W} by transformation of their Cartesian components.

Exercise 7.

Use the results of Exercise 5) and 6) considering again $\vec{V} = (x^2 + 3y, y^2 + 3x)$ to compute:

- a) $V^{\alpha}_{,\beta}$ in Cartesian coordinates.
- b) The transformation $\Lambda^{\mu'}{}_{\alpha}\Lambda^{\beta}{}_{\mu'}V^{\alpha}{}_{,\beta}$ to polar coordinates.
- c) the components $V^{\mu'}_{:\nu'}$ directly in polar coordinates using the Christoffel symbols (38) to (41) from Lesson notes 4.

- d) the divergence $V^{\alpha}_{;\mu'}$ using a). e) the divergence $V^{\mu'}_{;\mu'}$ using b) or c). f) the divergence $V^{\mu'}_{;\mu'}$ using equation (58) from Lesson 4 notes.

Exercise 8.

For the vector whose polar components are $(V^r = 1, V^{\theta} = 0)$ compute in polar coordinates all the components of the second covariant derivative $V^{\alpha}_{:\mu:\nu}$ (Hint: treat the first covariant derivative as a $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ tensor.