INTRODUCTION TO GENERAL RELATIVITY AND GRAVITATION

Homework 3

Exercise 1.

Show that the number density of dust measured by an arbitrary observer whose four-velocity is \vec{U}_{obs} is $\vec{N} \cdot \vec{U}_{obs}$.

Exercise 2.

Show that $T^{\alpha\beta}_{,\beta} = 0$, when α is any spatial index, is just Newton's second law.

Exercise 3.

Show that in a momentarily co-moving reference frame

$$T^{\mu\nu} = \begin{pmatrix} \rho & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix},\tag{1}$$

can be written like this:

$$T^{\mu\nu} = (\rho + p)U^{\mu}U^{\nu} + p\eta^{\mu\nu}, \tag{2}$$

Exercise 4.

In an inertial frame \mathcal{O} calculate the components of the stress-energy tensors of the following system:

(a) A group of particles all moving with the same velocity $\vec{v} = \beta \vec{e}_x$, as seen in \mathcal{O} . Let the rest-mass density of these particles be ρ_0 , as measured in their comoving frame. Assume a sufficiently high density of particles to enable treating them as a continuum.

Exercise 5.

Many physical systems may be idealized as collections of non-colliding particles (for example, black-body radiation, rarified plasmas, galaxies, and globular clusters). By assuming that such a system has a random distribution of velocities at every point, with no bias in any direction in the MCRF, prove that the stress-energy tensor is that of a perfect fluid. If all particles have the same speed u and mass m, express p and ρ as functions of m, u, and n. Show that a photon gas has

$$p = \frac{1}{3}\rho$$
.

Exercise 6.

Use the identity $T^{\mu\nu}_{,\nu}=0$ to prove the following results for a bounded system (i.e. a system for which $T^{\mu\nu}=0$ outside a bounded region of space):

(a) $\frac{\partial}{\partial t} \int T^{0\alpha} d^3x = 0$ (conservation of energy and momentum).

Exercise 7.

Defining the Electromagnetic tensor

$$F_{\mu\nu} = \begin{pmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & B_3 & -B_2 \\ E_2 & -B_3 & 0 & B_1 \\ E_3 & B_2 & -B_1 & 0 \end{pmatrix} = -F_{\nu\mu}$$
 (3)

Prove that Maxwell's equation in component notation:

$$\epsilon^{ijk}\partial_j B_k - \partial_0 E^i = J^i \tag{4}$$

$$\partial_i E^i = J^0 \tag{5}$$

$$\epsilon^{ijk}\partial_j E_k + \partial_0 B^i = 0 \tag{6}$$

$$\partial_i B^i = 0 \tag{7}$$

can be written in terms of (3):

$$\partial_j F^{ij} - \partial_0 F^{0i} = J^i \tag{8}$$

$$\partial_i F^{0i} = J^0 \tag{9}$$

and then combined:

$$\partial_{\mu}F^{\nu\mu} = J^{\nu} \tag{10}$$

and

$$\partial_{[\mu} F_{\nu\lambda]} = 0 \tag{11}$$

Exercise 8.

Use the identity $T^{\mu\nu}_{\ ,\nu}=0$ to prove the following results for a bounded system (i.e. a system for which $T^{\mu\nu}=0$ outside a bounded region of space):

(b)
$$\frac{\partial^2}{\partial t^2} \int T^{00} x^i x^j d^3 x = 2 \int T^{ij} d^3 x$$
 (tensor virial theorem).
(c) $\frac{\partial^2}{\partial t^2} \int T^{00} (x^i x_i)^2 d^3 x = 4 \int T_i^i x^j x_j d^3 x + \int T^{ij} x_i x_j d^3 x$