PHYS 5310

CLASSICAL MECHANICS - 2023

Homework 4

Exercise 1.

Find the relation between the angles θ_{1} and θ_{2} (in the L-laboratory- system) after a disintegration of one particle into two new ones.

Exercise 2.

Find the angular distribution of the resulting particles from the disintegration discussed in Exercise 1 , in the L system.

Exercise 3.

A collision occurs between a moving particle m_{1} and a second particle m_{2} at rest. Find the velocity of each of them afterwards in terms of their directions of motion in the L system.

Exercise 4.

Determine the effective cross section for scattering of particles from a perfectly rigid sphere of radius a. Notice that this is equivalent to $U=\infty$ for $r<a$ and $U=0$ for $r>a$.

Exercise 5.

Express the effective cross section from Exercise 4 as a function of the energy ϵ lost by a scattered particle.

Exercise 6.

Find the effective cross section as a function of the velocity v_{∞} for particles scattered in a field $U=\alpha r^{-n}$.

Exercise 7.

Find the effective cross-section for scattering in a field $U=\alpha / r^{2}$ with $\alpha>0$.

