PHYS 5310

CLASSICAL MECHANICS - 2022

Homework 3

Exercise 1.

Find the equations of motion for a particle in the field:
a)

$$
U(x)=-\frac{U_{0}}{\cosh ^{2} \alpha x}
$$

b)

$$
U(x)=U_{0} \tan ^{2} \alpha x
$$

Exercise 2.

Find the equations of motion for a particle in the field $U(x)=-A x^{4}$ if its energy is 0 .

Exercise 3.

Consider how the equations of motion change when you "add" a small quantity $\delta U(x)$ to the field $U(x)$ where there are no turning points.
Use this consideration to find the change in:

$$
U(x)=\frac{m \omega^{2} x^{2}}{2}
$$

when you add $\delta U(x)=\frac{m a x^{3}}{3}$.

Exercise 4.

Find how the finite period of motion of a particle in the field $U(x)$ changes when a small quantity $\delta U(x)$ is added to it. Use your result to study the change in the finite period of a particle in field

$$
U(x)=\frac{1}{2} m \omega^{2} x^{2}
$$

when it is changed by a small quantity

$$
\delta U(x)=\frac{1}{4} m \beta x^{4} .
$$

Exercise 5.

Integrate the equations of motion for a particle in the central field assuming different values of the energy (i.e. $E<,>,=0$) and relationships between momentum and α.

$$
U(r)=-\frac{\alpha}{r^{2}} \quad \alpha>0
$$

Exercise 6.

Find the equations of motion and trajectories of a particle in the field

$$
U(r)=\left\{\begin{align*}
-V, & \text { if } r<R \tag{1}\\
0, & \text { if } r>R
\end{align*}\right.
$$

for different values of energy and momentum. This potential is called the rectangular spherical potential well.

