PHYS 5310

CLASSICAL MECHANICS - 2023

HOMEWORK 2

Exercise 1.

A particle of mass m moving with velocity v_{1} leaves a half space in which its potential energy is $U_{1}=$ constant and enters another half space where the potential is a different constant U_{2}. Determine the change in motion of the particle.

Exercise 2.

Show the covariance of E-L when transforming the Lagrangian from coordinates q_{i} to Q_{i}

$$
\begin{equation*}
q_{i}=q_{i}\left(Q_{1}, Q_{2}, \ldots, Q_{s}, t\right), \quad i=1,2, \ldots, s \tag{1}
\end{equation*}
$$

Exercise 3.

How does the Lagrange function

$$
\begin{equation*}
L=\sqrt{1-\left(\frac{d x^{2}}{d t}\right)} \tag{2}
\end{equation*}
$$

transforms under the change of coordinates q and time τ below?

$$
\begin{align*}
x & =q \cosh \lambda+\tau \sinh \lambda \\
t & =q \sinh \lambda+\tau \cosh \lambda \tag{3}
\end{align*}
$$

Exercise 4. Noether's theorem

Assume that under the following coordinate transformation:

$$
\begin{align*}
q_{i}^{\prime} & =q_{i}+\epsilon \Psi_{i}(q, t) \tag{4}\\
t^{\prime} & =t+\epsilon \chi_{i}(q, t)
\end{align*}
$$

the action of the physical system under consideration is conserved, i.e.

$$
\int_{t_{2}}^{t_{1}} L(q, \dot{q}, t) d t=\int_{t^{\prime}{ }_{2}}^{t^{\prime}{ }_{1}} L\left(q^{\prime}, \dot{q}^{\prime}, t^{\prime}\right) d t^{\prime}
$$

Then show that the following quantity is an integral of motion:

$$
\sum_{i} \frac{\partial L}{\partial \dot{q}_{i}}\left(\dot{q}_{i} \chi-\Psi_{i}\right)-L \chi
$$

Exercise 5.

Find the integrals of motion if the type of operation does not change under:
a. A space displacement.
b. A rotation.
c. A time scale change.
d. A spiraling displacement.
e. A transformation like the one described in formula (3) Exercise 3 above.

Exercise 6.

Find the integrals of motion for a particle that moves:
a. In the uniform field $U(\vec{r})=-\vec{F} \cdot \vec{r}$.
b. In the field $U(\vec{r})$ where $U(\vec{r})$ is a homogeneous function $U(\alpha \vec{r})=\alpha^{n} U(\vec{r})$. Determine for which value of n the similarity transformation does not change the operation.
c. In the field of the progressing wave $U(\vec{r}, t)=U(\vec{r}-\vec{V} t)$ where \vec{V} is the constant speed of the wave.

