MW 1 Solution

Ex 1

$$
\begin{aligned}
& F_{y}=m \ddot{x} \\
& F_{y}=m \ddot{u} \\
& \frac{1}{\pi} \sqrt{x^{2}+r^{2}} \\
& \theta=\tan ^{-1} \frac{\pi}{x} \\
& \binom{F_{r}}{F_{\theta}}=\left(\begin{array}{ll}
\frac{\partial r}{\partial x} & \frac{\partial r}{\partial \gamma} \\
\frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial \partial}
\end{array}\right)\binom{F_{x}}{F_{u}} \\
& \binom{F_{\sigma}}{F_{\theta}}=\left(\begin{array}{lll}
\frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} & \\
+\frac{y}{\left(\sqrt{1+\frac{x^{2}}{4}}\right) x^{2}} & \sqrt{1+\frac{x^{2}}{7^{2}}} & \frac{1}{x}
\end{array}\right)\binom{\dot{x}}{m \ddot{y}} \\
& \binom{E_{\delta}}{F_{\theta}}=\left(\begin{array}{cc}
\sin \theta & \sin \theta \\
\frac{\sin \theta}{r} & c \frac{\partial \theta}{r}
\end{array}\right) \operatorname{men} \frac{\partial^{2} x\left(r^{2} y\right)}{\partial r^{2}} \frac{\alpha^{2}(\theta)}{\alpha 4^{2}}
\end{aligned}
$$

the owly perpore of this rathes tedions exercite is to reabigy the innpritance of a covariont freatrunt in plugsics, like the hagraengion formalosu.

Exercise 2 Double peuduluven The hagrangian is

$$
\begin{aligned}
L= & \frac{1}{2}\left(m_{1}+m_{2}\right) l_{1}^{2} \dot{\phi}_{1}^{2}+\frac{1}{2} m_{2} l_{2} \dot{\phi}_{2}^{2}+m_{2} l_{1} l_{2} \dot{\phi}_{1} \dot{\phi}_{2} n\left(\phi_{1}-\phi_{2}\right) \\
& +\left(m_{1}+m_{2}\right) g l_{1} \operatorname{con}_{1}+m_{2} g l_{2} \operatorname{cn} \phi_{2}
\end{aligned}
$$

the epuations of mestion can be obtained noticing that me hare two generaliged coovainates ϕ_{1} and ϕ_{2}

$$
\left.\begin{array}{l}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\phi}_{1}}\right)-\frac{\partial L}{\partial \phi_{1}}=0 \\
\frac{d}{\theta t}\left(\frac{\partial L}{\partial \phi_{2}}\right)-\frac{\partial L}{\partial \phi_{2}}=0
\end{array}\right\}
$$

Exercise 3

We choose x as a gureralezed coordinate. The weight of a segment of length l of rope is $F=\mu g x$. So $U=-\int F d x \rightarrow U=\frac{\mu g x^{2}}{2}$ while the weight of $L-l$ is halanced out is e vernal reaction force of the table. suit for the kinetic energy friction is 0 .
so $T=\frac{1}{2} \sum m_{i} v_{i}^{2}=\frac{1}{2} M v^{2}=\frac{1}{2} M \dot{x}^{2}$
$T=\frac{1}{2} \mu L \dot{x}^{2} \leqslant$ all the pope vireos with the same velocity!
Then $L=\frac{1}{2} \mu L \dot{x}^{2}+\frac{\mu g x^{2}}{2}$

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x} & =0 \\
\mu L \ddot{x}-\mu g x & =0 \\
\ddot{x}-\omega^{2} x & =0 \quad \omega=\sqrt{g / L}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow x(t)=A \cosh (\omega t)+B \sinh (\omega t) \\
& \dot{x}(0)=0 \quad x(0)=l \\
& \rightarrow A=l \quad \& B=0 \\
& \text { fo } x(t)=l \cosh (\sqrt{q / L} t)
\end{aligned}
$$

Eyercise 4

$$
\begin{aligned}
T & =\frac{1}{2} \mu \dot{x}^{2} \quad U=-\frac{k x^{2}}{2} \\
L=T-U & =\frac{1}{2} m \dot{x}^{2} \frac{+k x^{2}}{2} \\
\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}-\frac{\partial}{\partial x} & =m \ddot{x}-k x=0 \\
\ddot{x} & =\omega^{2} x \quad \omega
\end{aligned}
$$

$x=A \cos \omega t+B \sin \omega t$
$A \notin B$ outermined lo ivitud $x(0) \neq \dot{x}(0)$

Exerase 5

1) The Lagraugian is additive. For two carstrums $A \notin B$ forparitso thes do not interact $L \rightarrow=L_{A}+L_{B}$
2) E-L equations do not cherrge if the hagrangian is aunetplied by a canstant.
3) A Lagrangian is ould deferked up to an additire total time arrivative of a fucction of condiuates and time.

Exercise 6
Assume $x=0$ when $t=0$ then $C=0$
If $t=t_{a}$ when $x=a$
Then $a=A t_{a}^{2}+B t_{a}$
And $B=\left(\frac{a}{t_{a}}-A t_{a}\right)$
So $x(t)=A t^{2}+\left(\frac{a}{t_{R}}-A t_{d}\right) t$
Action is

$$
\begin{aligned}
S & =\int_{0}^{t_{a}} L(x, \dot{x}, y) d t=\int_{0}^{t_{a}}\left(\frac{m}{2} \dot{x}^{2}+F_{x}\right) d t \\
& =\frac{m A^{2} t^{3}}{6}+\frac{m a^{2}}{2 t_{a}}-\frac{F A t^{3}}{6}+\frac{F_{a} t_{a}}{2}
\end{aligned}
$$

$\frac{\partial S}{\partial A}=0$ mimi seen of action

$$
\begin{aligned}
& \frac{2 m \Delta t^{3}}{6}=\frac{E t^{3}}{6} \rightarrow \Delta=\frac{F}{2 m} \\
& x(t)=\frac{F}{2 m} t^{2}+\left(\frac{a}{t_{a}}-\frac{F_{t a}}{2 m}\right) t
\end{aligned}
$$

$$
\text { Exercise } 7
$$

You only have to calculate

$$
\begin{array}{ll}
x=r \cos \phi & d x=d r \cos \phi-r \sin \phi d \phi \\
y=r \sin \phi & d y=d r \sin \phi+r \cos \phi d \phi \\
z=z & d z=d z \\
a x^{2}+d r^{2}=d r^{2} \cos ^{2} \phi+r^{2} \sin ^{2} \phi d^{2} \phi-2 r \sin \phi \operatorname{sid} \phi \\
+d r^{2} \sin ^{2} \phi+r^{2} \cos ^{2} \phi d \phi^{2}+2 r \sin \phi \sin \phi d r \phi \phi \\
=d r^{2}+r^{2} d \phi^{2}
\end{array}
$$

So $a x^{2}+d y^{2}+d z^{2}=d r^{2}+r^{2} d \phi^{2}+d z^{2}=d L^{2}$ $\operatorname{en} \frac{d l^{2}}{d t^{2}}=r^{2}+r^{2} \dot{\phi}^{2}+\dot{z}^{2}$
Similarly it is easy to prove with $x=r \cos \phi \sin \theta, y=r \sin \phi \sin \theta, z=r \cos \theta$

$$
d l^{2}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}
$$

etc.

