
Classical Mechanics 2025
Lesson 3: Introduction to Relativistic Mechanics

Mario C Dı́az

1 Newtonian framework

An implicit concept in Newtonian Mechanics is the idea of absolute time: that is the existence of a
time that is the same for all observers independently of their system of reference. The demise of the
idea of an absolute space is somehow easily achieved (at least for a physics major) when studying
Galilean transformations: We are familiar with the occasional impossibility, for a short instant of
time, to distinguish which car is moving in which direction, at a light stop. Are we moving forward
or is the other car moving backwards?

Essentially this is the physical impossibility of detecting between inertial frames of reference.
There is no absolute system of reference but at least there is a privileged set of them and there
seems to be an absolute time common to all of them. We’ll see that a new type of relativity will
bring down the notion of absolute time too and consequently the concept of simultaneity in physics.

1.1 Galilean Transformations

Newton’s first law defines a privileged set of bodies, those not acted upon by forces; they move at
constant velocity or they stay at rest. These set of bodies and the ones of co-moving observers are
called inertial frames. Let’s assume that one frame of reference O′ has a constant velocity

~v = (vx, vy, vz) (1)

with respect to another called O. Then if the coordinates of an event at O′ are related to the ones at
O by the equations:

x = x′ + vxt; y = y′ + vyt; z = z′ + vzt; t = t′ (2)

(Notice that the case vz = vy = 0 is what it’s called standard configuration in some books.)
The last of equations in (2) means that there is an absolute time. Equation 2 give the coordinate
translation needed to understand the different perception in the paradox of the cannonball thrown
from the top of a sailboat’s mast. In Galileo’s book, the Dialogue of two New Sciences, the char-
acters in the book recalled the Aristotelian impossibility of reconciling the two different views that
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two observers have of the following phenomenon: A cannon ball is thrown from a sailing boat that
is moving a constant speed respect to the shoreline. The sailor throwing the ball sees:

A cannon ball as perceived by the sailor who threw it
from the top of the mast of a moving ship.

An observer on the beach sees the picture below as the ship movings in front of her.

The same cannon ball as perceived by an observer on the beach.

Both pictures are correct, as we know, and the descriptions can be easily transformed into one
another using equations (2).

2 The principle of special relativity

The previous discussion formulates the impossibility of distinguishing between inertial frames of
reference and makes the motion of one with respect to other a relative concept. Position and
velocity are relative concepts. It took humankind 2000 years to shed the sacred concept of an
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absolute space: from the rigid hierarchical universe of Aristotle to the physical description of
Galileo and Newton. Remember that in Aristotle’s cosmogony there was an absolute privileged
state: the one at rest. There was a natural position for each body according to its nature (things
with more “earth” will quickly move to the ground, with more “air” will elevate). Motion occurs
because of the need for each object to go back to its natural state after external agents changed
it. After the Newtonian revolution it will take another half millennium to dispose of the concept
of an absolute time. Newton’s mechanics was the first successful unification in the history of
physics: it unified the mechanics of the heavens with the mechanics of bodies on Earth. The second
one was Maxwell’s formulation of his equation of electromagnetism in 1865. This theory put
electricity and magnetism as manifestations of the same phenomenon and predicted the existence
of electromagnetic waves traveling at 299,792 kilometers per second. But Maxwell’s theory was
bringing about a contradiction with Galilean Relativity: Maxwell’s equations implied that the speed
of light ought to be the same (in vacuum) regardless of the relative velocity of the reference systems
in motion utilized to measure it.

The so-called restricted principle is a natural consequence of the mathematical formulation of
Galilean Relativity: Newton’s laws are invariant under a Galilean transformation. The inclusion
of all physical laws, encompassing Maxwell’s equations as well, within the Principle of Special
Relativity is Einstein’s main reformulation of Relativity.

Postulate I
All inertial observers are equivalent. In other words; the physics described by all inertial observers
is the same. In the modern language of relativity: the laws of physics are invariant under a Galilean
transformation.

Postulate II
The velocity of light is the same in all inertial systems. This second statement is not obvious at
all. Furthermore it is counterintuitive and in principle in contradiction with our understanding of
Galilean Relativity. Think about the classical “gedanken experiment”: We have the following two
inertial frames: a train moving at constant speed v with respect to the ground. One of the observers
travel on the top of one of the wagons and holds in his hands a pistol and a flashlight.

A flashlight and a gun are fired from a train in motion

A second observer is watching the train pass by from the ground. They are ready to perform all the
needed experiments to determine positions, and velocities. The bodies under study are bullets from
the pistol and the light from the flashlight. When the observer on the train shoots the gun the speed
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comes to be, with no surprise,v + vb as measured from the ground. When the experiment with the
flashlight is performed the speed of light is the same for both observers!

2.1 The speed of light

Einstein himself claimed to have based his Special Relativity theory in two experiments: 1) Fizeau’s
experiment and 2) stellar aberration of light.

Fizeau’s experiment
Fizeau measured the speed of light in a body in motion. To this effect he use an apparatus consist-
ing in a tube with water circulating through it at a known velocity. He was expecting to measure a
speed equal to the speed of light in vacuum plus the speed of water. The light beam was propagated
in both directions (along the water and against it) to make the effect stronger by comparison be-
tween them. He used interferometric techniques similar to the ones used in LIGO. The unexpected
effect for Fizeau was that the measured effect contradicted Galilean Relativity.

Stellar aberration
Stellar aberration is related to stellar parallax. Due to the motion of the Earth around the Sun
the stars relative position in the sky changes throughout the year (see Figure). Parallax measure-
ments is the only method to determine the distance to nearby stars (knowing the parallax angle and
the baseline distance –Earth to the Sun– the distance to the star can be easily inferred by simple
trigonometry). James Bradley —a British Astronomer Royale from the XVII century— set to mea-

Figure 1: Distance to a nearby star.

sure the distance to the star Gamma Draconis. He observed that there was a substantial difference
with the expected result: the angle did change, but the difference did not correspond to the Earth’s
orbital position. It was delayed: this is the effect known as stellar aberration. What is the reason for
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this “aberration”. While light takes some time in reaching the Earth, our planet will keep moving
while it arrives. Bradley managed to calculate the effect and verify that it was determined by the
velocity of Earth in its orbit. The importance of this effect is that it is another proof that the speed
of light is constant regardless of the relative speed of the stars respect to the Earth.

Another interesting fact related to the stars relative motion is that the observation of stars in a
binary system shows that speed of light in vacuo is independent of the motion of the sources. If this
was not true then we would nott perceive their orbits as Keplerian, i.e. circles and ellipses. Their
orbits would appear distorted!

2.2 The k-factor

From our previous discussion it is clear then that intervals of time between events will change
among inertial frames that are moving with respect to each other: if Postulate 2 is true then the times
and lengths measured by inertial observers in relative motion will be different. We can assume
that the difference can be proportional by a constant factor that only depends from the relative
velocity. This is the k-factor. Notice that k obeys a reciprocal relationship for both observers.
One observation: when we work with space-time diagrams a straight vertical line will represent
a stationary observer. A tilted line (at somehow less than 45 degrees if t is the vertical axis) will
represent an observer speeding away from the coordinate system. If you look at the figure:

Left: An observer B moving away at speed v from A.
Right: Observer B moving with speed v′ > v and the k factor is larger in this latter case.

To calculate the k factor it is useful to notice that the relationship between time and space traveled
by a ray of light can be inferred from the following diagram. (notice that a light ray travels at 45◦

in a t− x diagram as below (taking the system of units where c = 1.
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A light ray traveling from x = 0 and t = t1 to point P (T, x) and back to x = 0.

It is easy to convince yourself that the value of t and x for event P are given by:

(t, x) =

(
1

2
(t1 + t2),

1

2
(t2 − t1)

)
(3)

2.2.1 Relative speed of two inertial observers

Consider this scenario A sends a signal to B who is moving at a speed v away from A. A and B
were “together” at t = 0. At time T later A send. T’ is now equal to kT. The signal is bounced back
from B to A. Then now for A T = kT’ = k(kT). Looking at the picture:

A light ray traveling from x = 0 and t = t1 to point P (T, x) and back to x = 0.

The relationship is clear. Applying now this relationship to (3) where t1 = T and t2 = k2T we
obtain:

(t, x) =

(
1

2
(k2 + 1)T,

1

2
(k2 − 1)T

)
(4)
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Then

v =
x

t
=
k2 − 1

k2 + 1
(5)

Solving for v we find

k =

(
1 + v

1− v

) 1
2

(6)

This a nice and compact formula that gives us the “dilation” factor in terms of the relative velocity
of the observers. See that if v = 0 then k → 1, which is what we expected; if v → −v then
k → 1/k. We shall go now directly into the derivation of the Lorentz transformations.

3 The Lorentz transformations

We already learn that Galilean transformations have an intrinsic flaw. They violate the constancy
of the speed of light for all inertial observers. We will derive the transformations that relate co-
ordinates and position of a given event for two inertial observers that are moving apart for each
other.

We have an event P, which has coordinates (t, x) in A and coordinates (t′, x′) in B. We want
now to relate t, x with t′, x′ (see figure below).

Observers O and O′ and their coordinates.

To have a signal arriving at P at time t, A has to send the signal at a time t − x/c (remember
we use a unit system in which c = 1) and then receive it back at time t+ x/c . Then from what we
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have learnt from k-calculus it is easy to see that:

t′ − x′ = k(t− x), t+ x = k(t′ + x′) (7)

Using the definition of k in terms of v, the speed of B relative to A, we can solve for t′, x′. Just a
little algebra shows: Adding the two equations:

2t′ = t

(
1

k
+ k

)
+ x

(
1

k
− k
)

(8)

Using (6) we have then:

t′ =
t− vx

(1− v2)1/2
and x′ =

x− vt
(1− v2)1/2

(9)

This is called a boost in the x direction. It is simple to verify that:

t′
2 − x′2 = t2 − x2 (10)

We will learn later that this is an important invariant quantity. The fact that a Lorentz transformation
has kept this quantity invariant is of tremendous importance. This quantity is called the interval
and its mathematical significance is at the core of the geometric structure of space-time.

3.1 Newtonian Mechanics, Maxwell’s equations and the need for a General theory
of Relativity

Newtonian Mechanics is invariant under Galilean Relativity. If we change from a reference system
{x} to a reference system {x′}

x′ = x− vt (11)

Newton’s equations

F = ma (12)

remain the same because

d2x′

dt2
=
d2x

dt2
= a (13)

From this it follows that it is impossible distinguish rest from any uniform rectilinear motion. There
is no preferred spatial position “x”. (there is an absolute time though!). But Maxwell equations
(and the Lorentz force) are not invariant under (11). Which is very clear from

~F = q( ~E + ~̇r × ~B) (14)
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Which is v dependent. Actually the full relativistic Lorentz force is

d

dt

 m~̇r√
1−

(
~̇r
c

)2
 = q( ~E + ~̇r × ~B) (15)

Notice also that Coulomb’s law

F =
qq′

r2
(16)

is not Lorentz invariant and it would violate Special Relativity. But...it is not a universal law. It is
the low velocity limit of Maxwell’s equations where the charges can be considered static or move
slowly respect to one another. We can also see that Newton’s law of Gravitation

F =
mm′

r2
(17)

would contradict Special Relativity if it were a Universal Law. It would require instantaneous
“communication” between the masses if they were to move. But nothing can travel faster than
light. Newton’s law is a static, non-relativistic limit, valid only when the masses do not move
rapidly respect to each other. We would need a field like the electromagnetic field to explain
gravitation, of which Newton’s gravity would be the low speed limit. We will see that we need a
theory not limited to inertial systems of reference but one that also includes accelerated systems of
reference.

4 The four dimensional world view

We can compare Galilean and Lorentz transformations from this table: Now we have a four di-

Table 1: Galilean and Lorentz transformations compared
Galilean Transformation Lorentz Transformation
t′ = t t′ = t−vx

(1−v2)1/2

x′ = x− vt x′ = x−vt
(1−v2)1/2

y′ = y y′ = y
z′ = z z′ = z

mensional continuum which we called space-time. In a Galilean transformation the quantity that is
preserved, as can be easily seen1 is:

σ = x2 + y2 + z2 (18)

1to visualize remember that the Euclidean geometry is defined by the distance between two points A with coordinates
(x1, y1) and B with coordinates (x2, y2) being d =

√
(x2 − x1)2 + (y2 − y1)2
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which is the Euclidean distance. In a Lorentz transformation the preserved quantity is:

s2 = t2 − x2 − y2 − z2 (19)

This quantity is called a metric. A space-time for which this metric is invariant under Lorentz
transformations is called a Minkowski space-time. We see then that the two postulates of special
relativity imply that what we call Space has a completely different geometrical structure from the
one we are used to deal with and to understand (the Euclidean).

5 Lorentz transformations revisited

We will use the two postulates of the special theory of relativity to deduce the Lorentz transforma-
tions. First if observer O sees a particle moving freely (i.e. no force acting on it) then O′ should
also see a free particle. This means that the trajectory of the observed particle should be a straight
line in both systems of reference. Consequently because by the transformations -that transforms
the particle’s trajectory in one frame to another- straight lines remains straight lines, we required
that our transformations be linear:

~r = ~r0 + ~ut ⇔ ~r′ = ~r′0 + ~u′t′ (20)

and linearity means: 
t′

x′

y′

z′

 = L


t
x
y
z

 (21)

with y = y′ and z = z′. Let’s use now that the speed of light is the same in both inertial
systems. Let’s look at this quantity

I(t, x, y, z) = x2 + y2 + z2 − c2t2 (22)

Clearly I defines a sphere moving at the speed of light. If we look at a particular value of t like
t = t0 and we make I = 0 this would be a sphere of radius ct0. In the primed system of reference
we get:

I ′(t′, x′, y′, z′) = x′
2

+ y′
2

+ z′
2 − c2t′2. (23)

The spheres should be the same just because of the second postulate, If this is not clear think
about this: The light travels at speed c in all inertial systems; consequently in S it travels a distance
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r (radially) after a time t (c = r/t). In the other system also the corresponding distance r′ should
be traveled in a time t′ such that c = r′/t′. then:

I = 0 ⇔ I ′ = 0 (24)

which means:

x2 + y2 + z2 − c2t2 = x′
2

+ y′
2

+ z′
2 − c2t′2. (25)

With y = y′ and z = z′ we get then,

x′
2 − c2t′2 = x2 − c2t2 (26)

If we take L (
cosh(ψ) sinh(ψ)
sinh(ψ) cosh(ψ)

)
(27)

we get:

(
ct′

x′

)
=

(
cosh(ψ) sinh(ψ)
sinh(ψ) cosh(ψ)

)(
ct
xx

)
(28)

then

x′ = cosh(ψ)x+ sinh(ψ)ct (29)

ct′ = sinh(ψ)x+ cosh(ψ)ct (30)

If we make x′ = 0 we know that x = vt. So

cosh(ψ)x+ sinh(ψ)ct = 0 (31)

From this we see that:

tanh(ψ) =
x

ct
=
v

c
(32)

And using that

cosh2(ψ)− sinh2(ψ) = 1 (33)
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solve for cosh(ψ):

cosh2(ψ) =
1(

1− v2

c2

) 1
2

(34)

Notice that this defines ψ. It is easy to use

β =
1(

1− v2

c2

) 1
2

(35)

And now it’s easy to get (do it!):

sinh2(ψ) =
−v
c

cosh(ψ) = −v
c
β (36)

The matrix L is then:  1√
1−v2

c2

−v/c√
1−v2

c2

−v/c√
1−v2

c2

1√
1−v2

c2

 (37)

And the Lorentz transformation are:

t′ = β
(
t− x v

c2

)
(38)

x′ = β(x− vt) (39)

y′ = y (40)

z′ = z (41)

5.1 Exercise

How does the Lagrangian of a free particle:

L = −

√
1−

(
dx

dt

)2

(42)

transforms under the following coordinate transformation (q, τ):

q = cosh(ψ)x+ sinh(ψ)ct (43)

τ = sinh(ψ)x+ cosh(ψ)ct (44)

Discuss.
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6 The principle of least action

This principle states that for all mechanical systems there exists a certain integral S, called the
action, which has a minimum (or maximum) value for the “real life” path it follows in its motion,
so that its variation δS is zero. To determine the action for a free particle (a particle not under the
influence of any external force), this integral must not depend on our choice of reference system,
that is, it must be invariant under Lorentz transformations. We assume that it must depend on a
scalar. Furthermore, it is clear that the integrand must be a differential of the first order proportional
to the distance that particle follows in space.This is called the interval. So we take αds, where α is
some constant. So for a free particle the action must have the form:

S = −α
∫ b

a
ds (45)

where the integral is along the world line of the particle from point a at time t1 to point b at time
t2.

The light cone and the world line
of a particle in a Minkowski diagram.

The constant α is characterizing the particle (an intrinsic property). The minus sign guarantees a
minimum (and not a maximum). We will use now a new definition:

6.1 Proper time

Suppose that in a certain inertial reference system we observe clocks which are moving relative
to us in an arbitrary manner. At each different moment of time this motion can be considered as
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uniform. Thus at each moment of time we can introduce a coordinate system rigidly linked to the
moving clocks, which with the clocks constitutes an inertial reference system. In the course of an
infinitesimal time interval dt (as read by a clock in our rest frame) the moving clocks go a distance√
dx2 + dy2 + dz2 what time interval dt′ is indicated for this period by the moving clocks? In a

system of coordinates linked to the moving clocks, the latter are at rest, i.e., dx′ = dy′ = dz′ = 0.
Because of the invariance of intervals

ds2 = c2dt2 − dx2 − dy2 − dz2 = c2dt2
′
, (46)

from where we can quickly see:

dt′ = dt

√
1− dx2 + dy2 + dz2

c2dt2
= dt

√
1− v2

c2
=
ds

c
, (47)

We can refer to the integral as

S = −α
∫ b

a
ds =

∫ b

a
Ldt (48)

where L represents the Lagrange function of our system. Using (28) we get

S = −
∫ b

a
αc

√
1− v2

c2
dt (49)

and the Lagrangian for the free particle is:

L = αc

√
1− v2

c2
(50)

What is α? In non-relativistic mechanics we know it is the mass of the particle. Let us find the
relation between α and m. It can be determined from the fact that in the limit as c → ∞, our
expression for L must go over into the classical expression L = mv2/2. We expand L in powers
of v/c Neglecting the terms higher than O(v2/c2)

L = αc

√
1− v2

c2
≈ −α/c+

αv2

2c
(51)

The Lagrangian is defined up to a constant of motion which means

α = mc (52)

The action for a free particle then is

S = −mc
∫ b

a
ds (53)

and the Lagrangian is:

L = −mc2
√

1− v2

c2
(54)
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7 Integrals of motion

We will see what are the integrals of motion in Relativistic Mechanics.

7.1 Noether’s theorem

Let’s assume that there is the following transformation from coordinates qi, t to qi′, t′.

qi
′ = qi + εΨi(q, t) (55)

t′ = t+ εX(q, t) ε→ 0. (56)

And that the following quantity remains invariant under this transformation:∫ t2

t1

L(q,
dq

dt
, t) =

∫ t′2

t′1

L(q′,
dq′

dt′
, t′) (57)

Then ∑
i

∂L

∂qi
(q̇iX −Ψi)− LX (58)

is an integral of motion (i.e. a constant). It is not difficult to see that the momentum of a particle
is the conserved quantity associated with an invariance under coordinate displacements and it is
given by the vector ~p = ∂L/∂~v (where ∂L/∂~v is the symbolic representation of the vector whose
components are the derivatives of L with respect to the corresponding components of ~v). Using
(35) we get:

~p =
m~v√
1− v2

c2

(59)

For small velocities compared to v � c we recover the classical definition. The acceleration is

d~p

dt
=

m√
1− v2

c2

d~v

dt
(60)

The energy of the particle is the conserved quantity associated with an invariance under time dis-
placement:

E = ~p · ~v − L (61)

Using (35) and (40)

E =
mc2√
1− v2

c2

(62)
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This crucial formula shows, that in relativistic mechanics the energy of a free particle does not go
to zero for v = 0, but

E = mc2 (63)

This quantity is called the rest energy of the particle. For small velocities (v/c � 1), we have,
expanding (43) in series in powers of v/c,

E ≈ mc2 +
1

2
mv2 (64)

Formula (44) is valid for any body which is at rest as a whole. We call attention to the fact that
in relativistic mechanics the energy of a free body (i.e. the energy of any closed system) is a
completely definite quantity which is always positive and is directly related to the mass of the
body. In this connection we recall that in classical mechanics the energy of a body is defined only
to within an arbitrary constant, and can be either positive or negative. The energy of a body at
rest contains, in addition to the rest energies of its constituent particles, the kinetic energy of the
particles and the energy of their interactions with one another. In other words, mc2 is not equal
to
∑

amac
2 (where ma are the masses of the particles), and so m is not equal to ma. Thus in

relativistic mechanics the law of conservation of mass does not hold: the mass of a composite body
is not equal to the sum of the masses of its parts. Instead only the law of conservation of energy, in
which the rest energies of the particles are included, is valid. Squaring (40) and (43) and comparing
the results, we get the following relation between the energy and momentum of a particle:

E2

c2
= p2 +m2c2 (65)

Which is what we will see later in this course is called the Hamiltonian (H) of the system.

H = c
√
p2 +m2c2 (66)

For low velocities, p� mc, and we have approximately

H ≈ mc2 +
1

2m
p2 (67)

i.e., except for the rest energy we get the familiar classical expression for the Hamiltonian. From
(40) and (43) we get the following relation between the energy, momentum, and velocity of a free
particle:

~p = E ~v
c2

(68)

For v = c, the momentum and energy of the particle become infinite. This means that a particle
with massm different from zero cannot move with the velocity of light. Nonetheless, in relativistic
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mechanics, particles of zero mass moving with the velocity of light can exist. From (49) we have
for such particles:

p =
E
c

(69)

The same formula also holds approximately for particles with nonzero mass in the so-called ultra-
relativistic case, when the particle energy E is large compared to its rest energy mc2. Let’s extend
our formalism to 4 dimensions.

δS = −mcδ
∫ b

a
ds = 0 (70)

To find an expression for dS we noticed that

ds2 = −cdt2 + dx2 + dy2 + dz2 (71)

We will use the following convention: (x0, x1, x2, x3) = (−ct, x, y, z). This means that ds can be
written the following way:

ds =
√
−cdt2 + dx2 + dy2 + dz2 =

√
dxα
√
dxα (72)

and dxα = (x0, x1, x2, x3) while dxα = (x0, x1, x2, x3). Repeated index once as sub the other as
upper imply summation (Einstein convention). We will learn later what is the essential difference
between indices up and down. With this:

δS = −mc
∫ b

a

dxαδdx
α

ds
= −mc

∫ b

a
uαδdx

α (73)

where uα is the velocity in the direction α. Integrating by parts we get:

δS = −mcuαδxα|ba +mc

∫ b

a
δxα

duα
ds

ds (74)

to get the equations of motion we compare different trajectories between fixed two points,
which means (δxα)a = (δxα)b = 0. The actual trajectory is then determined from the condition
δS = 0. From (55) we get duα/ds = 0. This is a constant velocity for the free particle in four-
dimensional form. If we let the action vary as a function of the coordinates (δxα)a = 0 and we
can let the final point vary but constrained to satisfying the equation of motion. This means that
simplifying (δxα)b as just δxα.

δS = −mcuαδxα (75)

From this we obtain the four vector

pα = − ∂S

∂xα
(76)
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which is the momentum four-vector. The partial derivative respect to the space coordinates are the
traditional moment in 3-dimensions. The time derivative is the energy of the particle which is the
time component of the momentum. It is customary then to write the 4 momentum. the covariant
components (the vector with the indices down) are

pα = (E ,−pi) (77)

and the contravariant components are

pα = (
E
c
, pi) (78)

where we use the greek index α when we refer to the 4 dimensions (3 space, 1 time). The latin
i we reserve it just for the space components (like x, y, z). from (56) the components of the 4-
momentum are

pα = mcuα (79)

If we take the four velocity as uα = dxα/ds

uα =

 1√
1− v2

c2

,
ui

c
√

1− v2

c2

 (80)

where the first term is the time component of the velocity and the second one are the three space
components of the standard 3-velocity. Substituting (61) in (60) we get:

pα =

 mc√
1− v2

c2

,
mui√
1− v2

c2

 (81)

Thus, in relativistic mechanics, momentum and energy are the components of a single four-vector.
From this we could get the formulas for transformation of momentum and energy from one inertial
system to another.

8 Mathematical Properties of Lorentz transformations

1. We can think in terms of imaginary time coordinate: T = it/c, this would be one way
of interpreting the − sign in front of the time coordinate. And remembering this relationship:
sinh(x) = i sin(ix) We can then interpret the hyperbolic transformations as euclidean rotations in
complex space.

2. If v is very small we recover Galilean transformations.
3. Solving for the unprimed coordinates what we would see is similar formulas as if we take -v

for v and reverse the priming.
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4. Special Lorentz transformations form a group. A group is an algebraic structure consisting
of a set together with an operation that combines any two of its elements to form a third element
that is also a member of the set. In addition, the set and the operation must satisfy the following
properties: associativity, identity and invertibility. The Lorentz transformations is associative, i.e.
Two successive Lorentz transformations yield another Lorentz transformation, it has an identity el-
ement, the Lorentz transformation with 0 velocity, and it has an inverse, the Lorentz transformation
with velocity -v does give back the original system without transformation.

5. The line element: ds2 = c2−dx2−dy2−dz2 is invariant under a Lorentz transformation. It
is the square of the interval between events that are infinitesimally close (The Minkowkski metric).

9 Transformation of velocities

The main result here is that obviously the velocities “seen” by different inertial observers, who are
in motion with respect to each other, differ. i.e. taking differentials in (19)-(22)we get:

dt′ = β
(
dt− dx v

c2

)
(82)

dx′ = β(dx− vdt) (83)

dy′ = dy (84)

dz′ = dz (85)

then,

u′1 =
dx′

dt′
=

u1 − v
1− u1v/c2

(86)

u′2 =
dy′

dt′
=

u2 − v
β(1− u2v/c2)

(87)

u′3 =
dz′

dt′
=

u3 − v
β(1− u3v/c2)

(88)

10 Acceleration in special relativity

The following is a proof of the fact that the acceleration is an absolute quantity. Notice that this just
means: if a particle is accelerated in one inertial system it is accelerated for all inertial systems. Of
course the value is not invariant. It changes from one system to another depending on the relative
velocities of them respect to each other. If its acceleration is zero in one system then it’s zero
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in all other inertial systems. We can write the equations the time derivative corresponding to the
derivatives of (2.12)-(2.14) the following way: a1

a2
a3

 =

 A 0 0
B C 0
D 0 C

 a1
′

a2
′

a3
′

 (89)

where

ai =
dui
dt

and a′i =
du′i
dt′

(90)

A and C are functions of u′1 , B and D are functions of u′2 and u′3 as well respectively. The
determinant of the transformation is AC2. Notice by simple inspection of the equations that it’s
never 0, even if some of the accelerations are zero. So the transformation has an inverse. Conse-
quently if the accelerations are zero in one system they remain zero for all other systems. If they are
different than zero, then they will remain different from zero, although the values will be different.
To summarize let’s compare the theories:

Theory Position Velocity Time Aceleration
Newtonian Relative Relative Absolute Absolute

Special Relativity Relative Relative Relative Absolute
General Relativity Relative Relative Relative Relative

10.1 Uniform acceleration

From Newton’s first law we know that a body moving under uniform acceleration has

du

dt
= constant (91)

This could be misleading. Given enough time it looks that the magnitude of the velocity can
increase linearly with time without limit which would contradict the physics underlying special
relativity. A way around this is to adopt a different definition for uniform acceleration. Due to the
fact that the actual value is relative we can say that the acceleration of a particle is uniform if an
observer in an instantaneously co-moving frame measures that same value. If that’s the case then:
u1 = v and then u′1 = 0. IN that case the acceleration becomes:

du

dt
=

1

β3
a =

(
1− u2

c2

)3/2

a (92)
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Integrating the differential equation to find x we get

(x− x0) =
c

a

(
c2 + a2(t− t0)2

)1/2 − c2

a
(93)

The following is a plot done in Mathematica: Notice that we graph two curves, one with accelera-
tion a = 4 and the other one with acceleration a = 0.5 (the dashed line). c is taken to be 1, and x0
and t0 are taken both zero.

Event horizons for two observers,
one with a = 4, green curve and the other with a = 0.5, red curve.

The lines define event horizons. Event horizons are surfaces for which the escape velocity
is equal to the speed of light. In other words they are trapping surfaces from where nothing can
escape. Notice that they appear here because of the accelerated nature of the particle. These event
horizons provoked some heated debate in cosmology. Event horizons can radiate through what is
known as the Hawking effect. The radiation would show as a swarm of particles created in vacuum
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that observers would see just as a result of being accelerated. At the same time the horizons would
disconnect them from communicating with some regions of the universe. This is posing some
“ignorance” problem. Hawking speculated in the 70’s that this effect would make very difficult an
absolute definition of what elementary particles are.

11 Some reflections about the Special Theory and the Road to the
General one

(excerpts from “The Sounds of the Cosmos” by M. Dı́az, J. Pullin, G. Gonzalez to be published by
MIT Press)

The two postulates of the special theory, in spite of their simplicity, completely changed funda-
mental concepts of the physical world and affected other areas of knowledge, including philosophy.

Time, —the quintessential measure of change—, now was observer-dependent and was no
more an absolute concept. Absolutes have had great importance for human beings, since they
provide certainties. The questioning of absolutes has a shaking effect on human belief systems. The
impact of Einstein’s theory was enormous and attracted the interest of intellectuals in very different
fields of knowledge. On April 6th 1922 the French Society of Philosophy invited Einstein to speak
about relativity. An important debate took place with the French philosopher Henri Bergson. At
the time Bergson was more famous than Einstein and there is speculation that Einstein did not
get the Nobel Prize for the theory of relativity due to Bergson’s opposition (Einstein received the
Nobel prize in 1921 for his work on the photoelectric effect). Many consider that Bergson did
not understand Einstein’s theory. In a certain sense this implied a parting of the waters between
physicists and philosophers in the subsequent years.

There is no doubt that indeed the new theory of special relativity introduced a new way of
thinking —at least in physics—. It allowed to apply the methods of classical mechanics to elec-
tromagnetism. And with this it produced a new mechanics: the relativistic one. A result from it
—that Einstein himself anticipated— is the equivalence between mass and energy, which states
that the energy of a body at rest is equal to its mass multiplied by the speed of light squared (the
super famous E = mc2). Since the speed of light is enormous, even a stationary body with a small
mass has a considerable amount of energy: this is known as its rest energy. Einstein proposed this
equivalence between mass and energy in an article published in 1905 titled “Does the inertia of a
body depend on its energy content?”.

Near the end of the article Einstein mentions that the prediction could be tested with a body
that loses energy by radioactive emission2. Radioactive disintegration is the process by which an
unstable atomic nucleus loses energy emitting electromagnetic radiation. Measuring the emitted
energy by a radioactive compound, like uranium salts, and weighting its mass before and after the
emission, the formula E = mc2 could be verified experimentally.

2Radioactivity was discovered by Antoine Henri Becquerel in 1896. He received the Nobel Prize for this discovery
in 1903.
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According to Pais (the Einstein biographer we introduced in the previous chapter), Einstein
wrote in 1905 to his friend, the Swiss mathematician Conrad Habicht, about this article: “This line
of thought is... fascinating, but I cannot know if the dear Lord, playing a prank on me, laughs about
me with this discovery”. At that moment Einstein could not imagine the incredible consequences
that would be derived.

More than 30 years later —in 1939—, Einstein sent President Franklin Delano Roosevelt a
famous letter in which he mentioned that the technology to start a nuclear chain reaction was in
the hands of the Nazis in Germany. He argued with him that the US government should invest
money and support the development of an atomic bomb in the US. On July 16th 1945 the first test
of this bomb took place in the desert in a site known as Jornada del Muerto, 20 miles southeast
of Socorro, New Mexico. The energy liberated in the explosion —equivalent to 21,000 tons of
TNT—, confirmed soundly the principle of equivalence of mass and energy predicted by Einstein,
and started a new era in the history of mankind: the atomic one. Einstein would later regret sending
that letter.

The period that goes from the development of special relativity to the formulation of general
relativity (1905 to 1914) was turbulent. These were trying times for humankind: on July 28 1914
the first world war started and would become one of the longest and deadliest in history. Its impli-
cations went well beyond physics.

Pais calls the task of understanding what was going through the mind of the thinkers that were
changing the way of viewing the universe “the edge of history”. Pais worked with Einstein at the
Institute for Advanced Study in Princeton, and had the chance to explore closely the sharpness
of this edge. He tells that when he himself asked Einstein about the evolution of thinking by
scientists like Lorentz, Poincare and others during this transition time, he replied that the birth of
special relativity was “den Schritt”: the step, in German. For Einstein, the development of special
relativity —a revolutionary event in the history of human thought— with multiple scientific and
cultural impacts, was only that: a first step in the development of a more complete theory.

Einstein envisioned his development of the theory of relativity within a unified theory that could
explain the universe in its entirety. A theory that integrated all the fundamental ideas of physics in
a single and elegant formula: a “theory of everything”, as it was called by Richard Feynman, the
great American physicist who won the Nobel prize in 1965.

Einstein made several attempts from 1905 to 1907 to integrate gravity with the theory of rela-
tivity. The theory of general relativity as we know it today was presented in 1915. These ten years
from 1905 to 1915 were for Einstein a period of transition, that reflected also in his professional
life. He passed the exam that allowed him to teach, and he accepted a job as a college professor,
leaving his staff position at the patent office.
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