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Lesson 8: The Canonical Equations
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Hamilton’s equations

Sometimes it is more convenient to use generalized coordinates and generalized momenta instead
of generalized coordinates and velocities like we were doing so far: ¢;, ¢; — q;, p;. We assuming
that ¢ takes values ranging from 1 to n the number of degrees of freedom corresponding to the
physical system under consideration.

The transformation of coordinates that it is required can be done utilizing a Legendre trans-
formation. Starting with the the Lagrangian we can assume that a small change in the generalized
coordinates dg; and the generalized velocities dq; will induce a differential transformation in the
Lagrangian function which to first order is:

oL oL .
dL = i aq 00+ Z aq, 44
= pidgi + Y _ pidd; )

where the last equation is the result of substituting ng = p; just by definition of momentum

and p; = gTLi using Lagrange equations. But we also notice that ) . p;dg; can be written as a total
differential:

sz‘d(}z‘ =d (Z pz‘c_'h') - Z ¢idp; (2

Using this result in (1)

dL = Zﬁidqi +d (Z I%%‘) - Z qGidp; (3)

from which we obtain

d (Z Pidi — L) = - Zpidf_h' + ) dGidp “4)



or defining a new function which it is called the Hamiltonian':

pv qa ZP@% - (5)

which is precisely what we define as the energy of the system in the Lagrangian formalism. From
this definition (4) reads:

== pidgi+ Y _ didp; 6)
i i
From where it is simple to read the Hamilton equations:
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Notice that these are a set of 2n first order differential equations replacing the n set of second
order differential equations which are the Euler-Lagrange equations. These equations of motion in
the Hamiltonian formalism are also called the “canonical equations”.

Conservation of Energy

The total time derivative of the Hamiltonian is:

dH 8H
- = 8
ke qz + Z ®)
The last equation is because, due to Hamilton equations, ¢; = gH,pz = q H and then the

second term in (8) is equal to the third one. We can see then that if the Hamiltonian doesn’t depend
explicitly on time,

dH
@ 2

and the energy is conserved.
Like the Lagrangian, the Hamiltonian involve parameters. These parameters characterize the
physical system itself. Let A be such a parameter.Then

szdqz-l-ZPquz < )dA (10)

ISir William Rowan Hamilton (4 August 1805 — 2 September 1865) was an Irish mathematician, physicist and
astronomer.




on the other side the Hamiltonian
dH = — E )i dq; + E jid -—<8L> d\ (1D
i piag; : q;ap; N

which implies that
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where p, g and ¢, ¢ remain constant in each case.
We can arrive at the same conclusion in a different manner. Let the Lagrangian for a given

physical system be of the form L = Lo + L’ where L’ is a small correction to Ly. Then we can
define a new Hamiltonian for our system H' as in,
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such that
H =-I ' (14)
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The Routhian

Let’s suppose there are generalized coordinates and velocities p, £, p',f and we want to trans-
form them to p, §, p,, { where p, is the conjugate momentum to p. In that case we will have

oL oL aL oL oL oL
dL = —dq+ —=dq+ —=d¢ + —d pdq + pdg + ——d€ + —d (16)
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From where we can rearrange
oL oL
d(L — pg) = pdq + pdg + fdﬁ + —d€ (17)
23 o€
And we can define the Routhian as the following function



from where we obtain

oL oL ..
dR = —pdq + ¢dp — —=d¢ — —d 19
pdq +4dp = 5 £ o § (19)
and the following equations of motion:
_oR __OR
a—L = —a—R, 8—L = —8—}.2 (20)
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with the addition of the second order differential equation
d (OR OR
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In conclusion the Routhian is a Hamiltonian for the p coordinate and a Lagrangian for £. If we
want to write an expression for the energy of the system in terms of the Routhian

E—qq+£.—L—4m+£a.—L (22)

which gives explicitly in terms of R

on
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(23)
Why bothering defining a function such that the Routhian? When a coordinate is cyclic it might be
a convenient way of finding the equations of motion. For example, if p is a cyclic coordinate the
Routhian depends only on p, £, €. Using (20) we inmediatly find that
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i 0 (24)

p=

from where we can quickly conclude that p is a constant. Also in this case

dt o€ o3
where it is clear that only £ is involved.
Once € is obtained we can solve
OR
. _OR )
1=, (26)



by direct integration.
Poisson Brackets

Let f(p, g, t) be some function of the coordinates, momentum and time, Its total time derivative
is

df 8f of
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gx and py, are given by the canonical equations ¢; = g—g p; = _%- SO we can substitute
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[H, f] is called the Poisson bracket of h and f.
If the quantity f is an integral of motion it fulfills df /dt = 0 so in (29) we obtain

of

Fn +[H, f]=0 (€29

If the function f is additionally independent explicitly of time,

[H, f]=0 (32)

The Poisson bracket of the Hamiltonian and the function which is an integral of motion is zero.
This definition can be extended to two functions
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Properties of the Poisson bracket

Following the definition it is easy to prove the following properties

[f:9] = =l /] (34)

[fic] =0 (35)

if ¢ is a constant. Also if we have to functions f1, fo,

[f1 + fa, 9] = [f1,9] + [f2, g] (36)

[f1 X fa, 9] = filf2, 9] + falf1, 9] (37)

If we want to take the time derivative of the Poisson bracket (33)

of 99
= 38
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If one of the functions f and g is one of the momenta or coordinates the Poisson bracket reduces
to a partial derivative

af
39
Lfsar] = n (39)
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From where we can obtain
[@ak] =0 [pi,pe] =0 [pisqr] = i (41)
If we have three functions

[fs g, Bl] + [g, [hs f1] + [h, [f, 9]l = O (42)

This is called the Jacobi’s identity. It can be proved by direct calculation (brute force). But it’s
quite important in defining the nature of the Poisson brackets. We will prove it in the following



manner. Let’s define by introducing a square matrix J made up of Poisson brackets. i.e. equation
(41) can be written in the following manner,

Jij = [n,m] (43)

where [, 7] is a matrix whose element i, j is [1;,7;] We can introduce the following functions
associated to partial derivatives respect to the corresponding canonical variable

of 0g

fi= - gij = m (44)

817i ’

Using this notation the Poisson bracket of f and g can be expressed as

[f, 9] = fiJijg (45)

where, of course, J;; is the 7, j element of the matrix .J;; defined by (43). Considering now in (42)
the first Poisson bracket:

[f, g, hl] = fidizlg, hl; = fidij(grdrihl);. (46)

Due to the fact that the elements J;; are constants, the derivative with respect to 7 does not affect
them and we then have

Lf, g, )] = fidij(grJrihij + grjTriha). 47)

where remember that the two subindices in (f, g, h) refer to the corresponding second partial
derivatives respect to the canonical variables. And the other two Poisson brackets can be ob-
tained from (47) by cyclic permutation of f, g, h. There will be six terms in total each, each being
a quadruple sum over dummy indices ¢, j, k, adn /. Consider now the term in (47) which involves
a second derivative of h

Jij e figrhugs (48)

It is not difficult to see that the only other term involving a second derivative of h will appear in the
second double bracket in the Jacobi’s identity (42)

9, [h, f1] = grTra(hjJji fi)r- (49)
where the term containing the second derivative in A is
Jij e figrhiis (50)

but comparing (48) and (50) h;; = hj; (the order of the derivatives does not change the results).
The sum of both terms is then

(Jij + Jji) T figrhi; = 0, (51



due to the antisymmetry of J. Th eother four terms are cyclic permutations and the same process
performed above can be applied to the second derivatives of f and g, verifying Jacobi’s identity.

Poisson’s theorem

If f and g are integrals of motion, their Poisson bracket is also an integral of motion,
[f,g] = constant (52)

Proof

Let’s apply the Jacobi’s identity (42) using as a function h, the Hamiltonian of the system itself,
ie. h =H.

(H, [f,g]] + [f, 9, H]] + 9, [H, f]] = 0 (53)

but due to the fact that f and g are integrals of motion
[H,9] =0=[H, f] (54)
So in (53) the only surviving term is
[H,[f, 9]l =0 (55)

which indicates that [f, g] is indeed an integral of motion as well.

An alternative and instructive way of also proving this result is by directly calculating the time
derivative of the Poisson bracket using (29):

Lis.01= 21s.6)+ 1. 15.0) 56)
and now using (38)
0 0 0
gilral = |5ra] + [ 1.57] 39
we get
d [0 0
%[fag] - _8]tc7g:| + |: 7a‘zj| - [fa [g7HH - [gv [H7f]]
[0 0
= _a{Jr [H,f],g] + [ﬁa‘ZJr [H,g@
_ _j{,g} n [f, jﬂ (57)




and clearly if f and g are integrals of motion it proves the theorem.
The action as a function of the coordinates

Let’s consider the action as a function of the upper limit of integration ¢, i.e.

to
S = Ldt

t1

Looking at a variation of the action

oL 1% t2 /OL  d OL
o5 = [aq‘;q]tﬁ/h (afmq) Sqdt

(58)

(59)

The second term in the above equation, the integral, is zero, because of Lagrange’s equations.

For the first term in the sum we put d¢(¢1) = 0 and dq(t2) = dq. Then (59) becomes
65 = pdq

or assuming n degrees of freedom we get
68 = pidg
i

which implies

95 _
aql_pl

On the other hand from the definition of action

s

R 5
dt

an calculating explicitly

s _ 98 @-.,ﬁJrz.-.
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From where we have

gfch;—Zpiq'i:L—ZPidiz—H

where we use (63) and the definition of the Hamiltonian (5). From here we can write

dS = pidg; — Hadt

(60)

(61)

(62)

(63)

(64)

(65)

(66)



Let’s assume now that the change in .S occurs due to variation in the coordinates and time at the
beginning and end of the path

ds =" pPdg” — HPat® 3" pVag" — HWar® (67)

The only possible motion is the one for which dS is a perfect differential (i.e.dS = 0). The
principle of action imposes restrictions on the range of possible motions. Interesting enough the
Hamilton’s equations can be derived from defining the action

S = / (Z pidgi — Hdt) (68)

we then have

68 = / <(5pdq + pddq — B—H(Sth — 8H(5pdt> (69)
dq op

Integrating by parts the second term we get

H H
68 = /5p (dq — 8dt) + [p, dq] — /5q (dp + 8) dt (70)
p 9q

at the limits of integration we have ¢ = 0. We are left with two integrals where the integrands will
have to vanish independently because dp and Jq vary independently and arbitrarily. For this to be
the case we need

dq = a—Hdt dp = —8—Hdt (71)
dp dq

and dividing by dt are the Hamilton’s equations.
Maupertuis’ Principle

There is a simplified form of the Principle of least action which is useful if we are more inter-
ested in finding the path to be followed by a physical system than the precise position as a function
of time.

Let’s assume that the energy is conserved, and consequently both the Hamiltonian and the La-
grangian do not depend explicitly of time.

H(p,q) = E = constant (72)

We will also allow for a variation of the final time we are considering for a given path (instead of
to,t we will consider tg, t + dt. We have

08 = —Hot (73)

10



We are comparing not all possible virtual motions but only those which conserve the energy,

0S+Eft=0 (74)

Writing the action as

S = / (Z pidgi — Hdt) (75)

From where we obtain
S = /sz‘dqz‘ — E(t —to) (76)
i
The first term above is called the abbreviated action
So = / Zpid%' (77
i
The abbreviated action fulfills

§S0 =0 (78)

It has a minimum with respect to all paths which satisfy the law of conservation of energy and pass
through the final point at any instant.
In order to use this principle, the momenta need to be expressed as a functions of ¢ and dgq.

0 )
pi = %L(q,q) (79)
and
E = FE(q,q) (80)

Expressing dt in terms of ¢; and dg; in (80) and substituting in (79) we will have the momenta
in terms of ¢; and dg; with F as a parameter. The variational principle obtained in this manner is
called the Maupertuis’ Principle.

In the case that the Lagrangian takes its original form
1

L= zkj ain(9)didx — U(q) (81)

11



where the momenta are

; a (82)
bi = an g zk
and
1 ..
=3 Z aik(q)didr + U(q) (83)
ik
where the last equation gives
ik (q)dgid
dt \/sz a; k: Q’L Qk (84)

In order to obtain an expression where we use F as a parameter in (77) we substitute in ), p;dg; =
> ik Qik %{“dqi and then

si= [ \/ 2(E - U) Y an(o)das (85)

In the case of a single particle we have
1 [dl\?
T=- — 86
2" <dt> (86)

Sp = / 2B = U)mdl2 87)

from where

then Maupertuis

58 = 5/ V2(E = U)mdl =0 (88)

and if If the particle is free U = 0 and
VaEm / dl =0 (89)

which shows that the straight line is the shortest path in the absence of U. Returning to (76)

S = /Zpid(h — E(t —to) (76)

12



we will consider a variation respect to &/

0S50
J —0E — (t —tg)0E — Eét 0
S=35 (t —to) (90)
Substituting in (74)
S + Bt =0 (74)
we get
0S50
9E t— 1o on
where Sp = [ \/2(E — U)X, aix(q)dg;dgy, and taking the derivative we get
d Zd

which is the integral of (84)

Together with the equation for the path it determines the motion.
Canonical Transformations

In the Lagrangian formalism we can have s generalized coordinates ¢; — Q) such that Q; =
Qi(q,t). In the Lagrangian formalism ew have 2s generalized coordinates which can be trans-
formed

¢,p— Qi = Qi(p,q,t), P, = Pi(p, q,t). (93)

But the equations do not retain their canonical form under all possible transformations like (93).
What are the conditions that need to be satisfied so that with new coordinates P, ()
OH' OH'

Qz':aTji, Pi:_aQi (94)

for some H'.

One class of transformations is particularly important. These are called canonical transforma-
tions. We know that Hamilton’s equations can be obtained from

5/(Zpidqz' — Hdt) =0 (95)

13



If the new coordinates P, () satisfy the Hamilton’s Principle

5 / () PdQ; — H'dt) =0 (96)
Then the difference between (95) and (96) should just be a function of coordinates and time
> pidg; — Hdt = PidQ; — H'dt + dF 97)
which we can write as
dF = pidgi — )  PidQ; + (H' — H)dt (98)
from where we obtain
oF oF oF
T — ) PZ = A H/ =H ar 99
D 9 90, + 5 99)

F is called the generating function. We assume F' = F(q, @, t). When F' is known equation
(99) give the relationship between p, ¢ and P, () as well as the new Hamiltonian. In some situations
it may be more convenient to give F' in terms not of ¢, () but of ¢, P.

In these cases we apply a Legendre transformation

dF + 3 PQi) =Y pidg + Y QidP — i+ (H' — H)dt (100)
If wecall F + > P,Q; = ®(q, P, t) we have
0o 0P 0P
=22 = H =H+ 2 101
Pi=aw 9T on o (10D)

Similarly we can obtain canonical transformations involving generating functions of p, Q) or p, P.
Always H' — H is the time derivative of the generating function. If f does not depend of the time
H' = H. Notice also that with this formalism we can have Q; = p; and P; = —¢;. This is just an
exchange of names for the variables. In this context of arbitrariness of the meaning of p and ¢, they
are called Scanonically conjugated quantities.

Example

Consider the simple harmonic oscillator

p? 1
H="+ -—mw?¢® (102)
2m 2

14



where w = \/%. Let’s consider

Fi(q, Q,t) = q@Q (103)
From where using the relationships established in equation ( 101) we get
6F1 8F1 Y aFl
1 pP=_—— H =H+ — 104
and consequently we find p = () and P = —¢q and
21 21
H=r 4 nmu¢+0= @ + —mw?p? (105)
2m = 2 2m = 2
and
OH' _0H'  Q

- _ 9 . Q
=3P = mw*P, and P = 90 = (106)

which shows that @), P is physically equivalent to ¢, p.

General Theorem about Poisson brackets

The conditions relating canonically conjugated variables can be expressed in terms of the Pois-
son brackets.
If we have the Poisson brackets associated to two functions f and g calculated as derivatives respect
to the coordinates p, ¢ and P, () then

£, 9lpa = £, 9lPq 107)

This can be demonstrated by direct calculation using the canonical transformations explicitly. But
it can also be demonstrated in the following manner. We notice that in equations (99) and (101)
the time appears as a parameter. This makes it sufficient to prove (107) for functions that do not
depend explicitly on time.

Let’s think that g is the Hamiltonian of some system. Then following (29)

af

[fs9lpq = = (108)

In the equation above df /dt depends only of the physical system it describes, of course, and not on
the variables utilized to describe it. Consequently the Poisson bracket [ f, g] does not change when
transforming from one set of canonical coordinates to the other. Using together (41) and (108) we
get that P, () need to satisfy

(Qis Qklpg =0 [P, Prlpg =0 [P, Qklgp = ik (109)

15



if the transformation ¢, p — P, ) is canonical.

Notice that p(t), ¢(t) can be thought as they evolve with time as a set of canonical transforma-
tions, where S the action is the generating function.

Liouville’s Theorem

Figure 1: The phase space

The phase space is made up of the generalized coordinates and momenta. For a system with n
degrees of freedom it is 2n dimensional. A point in the phase space corresponds to a value of the
generalized coordinates like the position of a physical system and the corresponding generalized
momenta at the same time (ie. a state of the system).

As the system evolves with time the result of its motion represented as a curve in the phase space
is called its phase path.

dl' =dgy X dgo X .... X dgp—1 X dgn, X dp1 X dpa X .... X dpp_1 X dpn, (110)

is an element of volume in phase space.

Liouville’s Theorem states that

/dI‘ = constant (111)

i.e. the integral [ dI" over some region of the phase space is invariant under canonical transforma-
tions.

16



For example let’s consider variables p, ¢ which through a canonical transformation are replaced by
P, . We want to prove that

/dI‘ =dq) X ...dqy X dp1 X ... X dp, = /dQ1 X dQp X dPy X ... X dPy, (112)

Due to the transformation of coordinates

8(Q1..QuPi...Py)
d(q1---qnp1.--pn)

/dQ1 X . dQn X dPy X ... X dP,, :/ X dgy X ...dgqn X dp1 X ... X dpy,

where

o 9Q1QuPr )
0(q1---qnp1-.-Pn)

(114)

is the Jacobian of the transformation (the determinant of the matrix of the coordinate transfor-
mation that would take ¢;, p; to @);, ;). All we need to prove then is that D = 1.
We can divide numerator and denominator in (114) by 9(qj...gn Pi...Py,)

0(Q1..QnP1...Py)
D= o(q1...qnP1...Pp)

o(q1---qnp1-.-Dn)
o(q1...qnP1...Py)

As we can see in this Jacobian P ... P, appears both in the numerator and denominator of the
numerator. The same happens with ¢; ...q,, in the denominator. so we get

a(QlQn)

D — 9(q1---qn) P=constant
9(p1..-pn)
8(P1---Pn)q:constant

The Jacobian in the numerator is by definition, a determinant of order n whose ¢th row and
kth column is 0Q);/0q. Using (101) we can write it in terms of the generating function ® as
0Q;/0qr, = 0*®/0qOP;. Following the same line of thought we get in the denominator that the
ik element of the determinant is 9°®/3q;0P;. This means that the two determinants only differ
in the interchange of row for columns. Being equal it shows then that D = 1, completing the proof.

Significance of the Liouville’s theorem:
If we have a system of particles undergoing an evolution over time determined by the equations of

motion, as they move in phase space the volume they occupy remains unchanged

/ dl’ = constant
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The Hamilton-Jacobi equation

When we considered before the action as a function of coordinates and time -as in (65)- it was
shown that

oS
- tH(p,q,1) =0 (115)
ot
and
oS
= =y 116
o P (116)
We could generalize this result in this manner
oS S 08
—+ H e — o3t | =0 117
T <Q1 " 5 8qn) (117)

(117) is called the Hamilton-Jacobi equation. Recapping, we have so far studied the Lagrange’s
equations, the canonical equations and now the Hamilton-Jacobi equations. The first one is a sec-
ond order system of differential equations. The last two are first order differential equations.

The independent variables in the H-J equations are the time and the coordinates. For a system
with n degrees of freedom a complete integral must contain n 4 1 arbitrary constants. There will
be one constant of integration A such that

S=f(t,q1...qn;1...ap) + A (118)
where a...c, and A are the n + 1 arbitrary constants of integration.
We will make a canonical transformation from ¢, p using f(t,q, ) as a generating function

and o ...a, as the new momenta.
Let the new coordinates be (31...3,. The generating function then will satisfy

of of / of
;= —— = , H =H+ —= 119
Pi= 50 5= Ba; o (119)
And f will also satisfy the Hamilton-Jacobi equations (117), so
af oS
H=H+-—==H+—=0 120
+ o + 25 (120)

we also have ¢&; = 0 due to «; ..., being constants and 51 =0dueto §; = %.

The n coordinates g; can be expressed in terms of the time and the 2n constants « and 8. This give
the general integral of motion. The H-J method continues in this manner. After finding

S=f(t,q1.-qn;01...cp,) + A (121)

18



we calculate

08
aOéi

= 5, (122)

which gives the coordinates as functions of time and of the 2n arbitrary constants. Then the mo-
menta are

oS
2 123
Pi= B (123)
If the system is conservative, the H-J takes a simpler form
S =Su(q) — Et (124)
and substituting in
08 oS 0§
—+ H eQp; =—...—31t ) =0 125
o " (ql ™ g1 Ogn ) (122
gives the solution for the abbreviated action Sy
0S5y 0S5
H <q1...qn; 00...0> =F (126)
@ Oqn

Separation of variables

Let’s assume that one coordinate, i.e. g1, and 0S5/9q; appear in a particular functional form

S
(rb <q17 aq1>

which does not involve any of the other coordinates or derivatives or the time, i.e.

oS8 oS oS
® (o - = 12
<QZ7t7 aql7 at7¢<q178q1)> 0 ( 7)

where ¢ # 1 We look for a solution of the form

We can plug this in (127) we get
05" 98’ 0851
@ 79 ta a0 a0 [ = 12
<q T ¢<ql 8q1)> 0 (129)
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If we assume that we already found (128) when substituted in (129) it must become an identity
valid for any value of ¢;. But if this is true then ¢ must be a constant. So we can split (129) in two
separate equations:

dsS
¢ (Ch, d) = (130)
q1
and
08" 98’
d ) _ — 131
<q’57t7 aql7 8t ,Oé1> 0 ( 3 )

where « is an arbitrary constant. (130) is an ordinary differential equation (ODE) and S is then
obtained by integration. (131) involves fewer variables. If we could follow the same procedure for
all the g; then we would get a full set of ODEs. As a result the H-J equation could be solved by
quadratures.

If we are dealing with a conservative system we have to separate n variables (assuming n the
degrees of freedom of the system).
Once the separation is complete we shall get

S = ZS’k(qk,t,al,ag...an) — E(aq, ag...an)t (132)
k

Si. depends on only one coordinate. The energy £ as a function of a1, as...cu;, is obtained by
substituting Sy = »_ Sk in

(133)

05y 0S5
H(leQm 0 0>=E

87(]1.-.67%

A particular case is when one variable is cyclic, ie. let’s assume ¢1; g then is not appearing in
the Hamiltonian nor in the H-J equations. In that case the function ¢(q1,05/9q1) — 05/d¢q; and
then S7 = «1¢1 and we obtain

S = 5'(git) + a1y (134)

and «; is just the value of p; = 95/0q1 which corresponds to the cyclic coordinate. If we have a
conservative system then — E't corresponds to the “cyclic” coordinate .

20



Examples

a) Spherical coordinates (7, 6, ¢)

2

H=t (2P T ) 0.0 (135)
o \Pr T2 T ainZe T

‘We can choose

bO) c9)

U(r,0,¢) =
(1,0,6) = alr) + =22 + — O

(136)

where a(r), b(0), c(¢) are arbitrary functions. We can simplify the problem a bit by assuming that
the potential doe snot depend on ¢.

b(6

U(r,6.9) = a(r) + 2 (137

The H-J equations for .Sy are

1 /85> 1 [/88\> 1 950\
(=0 il 2 =F 1

2m ( or ) alr) + 2mr? ( 00 > 2mb(6) | + 2mr2sin?0 \ 9¢ (138)

Since ¢ is cyclic we look for
So = ped + S1(r) + Sa(0) (139)

which plugged in the equation (138) gives

S\ P}

— 2mb(6 = 14
<d9)+m()+sin20 p (140)
1 /dS;\2
i () +e0 = ? s

Integrating we get

2
S:—E+p¢¢+/\/ﬁ—2mb(9)— i d9+/\/2m(E—a(r))—f2dr (142)

sin? 6

where the arbitrary constants are py, 3 and E.
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b) parabolic coordinates

We can transform from cylindrical to parabolic coordinates (p, ¢, z) — (&,7, ¢), where the

transformation is performed through

ZZ%(é’—n) p=¢n

(143)

where 0 < ¢ < coand 0 < 1 < oo. Surfaces of constant £ and 7 are paraboloids of revolution
with z the axis of symmetry. Notice that in (143) we can identify a relationship with the spherical

radius r
E=r+=z n=r-—2z

If we calculate the Lagrangian in cylindrical coordinates

L= (P + 7% +2) = Ulp.0,2)

Substituting &, n, ¢ we get

1 & 1 19

where the moment are

pe=gml€ -+ )¢
Dy zim(g + 77)2

Py =ménd
and the Hamiltonian

C28pEtmpy Py
m £+ 2m&n

+U&n,9)

A physically interesting potential is

_a@) +b(n) _ alr+2)+b(r—2)

E+n 2r

So

9
m(&+n

22

250\ (350)2 1 <(950>2 a(§) + b(n)
5((95) o n +2m£77 ¢ * §+n

(144)

(145)

(146)

(147)

(148)

(149)

(150)

(151)

(152)



¢ can be separated as py¢ multiplying by m (£ + 1) and then we would get

05y 2 pgg 050 2 pi _
2¢ <8§> + ma(§) —mE§+?£+2n ((%7) +mb(n)—mEn+% =0 (153)
and making
So = pp¢ + S1(€) + Sa(n) (154)
we get
2¢ (21 2+ () — E+p3’—5 (155)
3 Tﬁ ma(§) — mEg % =
S22 p;
2n <d77> + mb(n) — mEn + o B (156)

Integration gives

2 2
S:—Et+p¢¢>+/\/ZLE+i—ma(g)—pd)ngr/\/mE—5—mb(n)—p¢dn

2 2¢ 4£2 2 2n 2n 4n?
(157)
where the arbitrary constants are pg, 3 and E.
b) Elliptic coordinates
These are &, 7, ¢ defined
p=0y/(€ 1)1~ 2= 0¢y) (158)
where o is a parameter and the range for £, nis 1 < & < oo, —1<np< 1. If Ay and A, are
points on the z axis they have
z=xo0
1 =v/ (2 —0)?+ p? (159)
ro =+/(2 + 0)2 + p?
Using (158)
r1=0(§—n) rg =0o(§+n) (160)
o+ 71 r9 — 11
= = 161
20 g 20 (i61)
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The Lagrangian can be easily transformed to elliptical coordinates from cylindrical ones:

L 90 9 ¢2 7> 1 90 o2V i2
5o (& — 1) 5271+ e +5mo (&7 = (A —n7)¢" = U(&,n, ) (162)

And from it the Hamiltonian is

1
" 2mo2(2 — )

1 1
[(52 —1)pi + (1 —n?)p + (52 — 1o 772) pi] +U(&n.¢)
(163)

A physically interesting case for U is

Cal@+b(n)  o? ro + 11 ro — 1y
o=t () o (25 16

a(&) and b(n) are arbitrary functions. The result is

B — 2mao2a(§) I
S——Et+p¢>¢+/\/2m02E+ o1 —(§2f1)2d§+
B+ 2mo2b(n) I
/ \/2m02E B pe _";2)26177 (165)

Note

Surfaces of constant ¢ are ellipsoids which in canonical form can be expressed:

.2 EE
o2¢2 T 22 1) 1 (166)

Their foci are A; and As.
The surfaces of constant n are hyperboloids
52 2

=1 167
o2 T o2(1—n2) (167)

Also with foci A1 and As.
Example

Find a complete integral of the H-J equation for a motion of a particle in a field U = o/r — F'z
(a Coulomb and a uniform field). Find a conserved function of the coordinates and the momenta
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that is specific to this motion.
Solution

The field is

_al§) +b(n) _ alr+2)+b(r—2)
V== = " (168)

where the coordinates are the parabolic ones

E=r+z n=r—=z (169)
and
| —
a(§) =a— §F§
b(n) = a+ %F# (170)

and then the solution is given by (157)

2
:—Et+p¢¢+/\/ mE+—m;§) :fg;d@r

/ B _mb(m) P
- - - n
2n  4n?

[ can be determined from (155) and (156)

26pg +ma(€) — mEE + =2 25 =f (171)
2 p
2np;, +mb(n) —mEn + % =4 (172)
Subtracting
2 pi
26p2 — 2np? - E E £ =2 1
Epg — 2np;, + ma(§) — mb(n) — mEE +m 77+2§ 2 B (173)
Transforming from p¢ and p,, to p, = 05/0p and p, = 05/0z we get
az p 3 1
B=—m|= +L(zp, — pp:) + — 52| — SmFp® (174)
T m mp 2
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Compare this with the conservation law discussed in formulas (94) through (95) from Lesson
4 (page 19).

—

7 x M+ a- (175)
r
which is a conserved quantity for a particle moving in the effective potential
o M?
U ¢ = — 176
fF = + 2mr? (176)
for potentials U = «o/r
Let’s calculate the total derivative of (175) respect to time:
d . S,
dt(UXJWFka:> (177)
we get
O x M+ a — al@- ) (178)
r r
Since M = m# x U we have
S oo v L
mr(v' - 9) —mi(r 0) + a— —a— (V- 7) (179)
r r
Using that mo = 047% we obtain
d . ~,
zﬁ@xﬂi+a9:ﬂ (180)

The direction is along the major axis from the focus to the perihelion and its magnitude is ae.
Example 2

Find the H-J equations of motion if the field is

v=242 (181)
1 T2

This is he Coulomb field of two fixed charges at a distance 20 apart.
Solution

In this case we can use elliptical coordinates. The field is

a(€) +b(n) 1)

U =
£ n?
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with

a§) = ———, a§) = ——— (183)

The action is given by (165)

B — 2moa(€ P
S:—Et+p¢¢+/\/2m02E+ 5;”_016‘( ) _ (52—¢1)2d§+

B+ 2mao2b(n) Py
2mo2E — — d
/\/ma 1—n? (=22

with the conserved quantities given by

2
B =0 <p2 + p(§> — M?+ 2mo (o cos b + g cos b) (184)

p

p2
M2 =(7 x p)2 = p22% + p* + r2p—‘§ — 22pp-p, (185)
) I
o)) 61
20 o

X2

Figure 2: The field at a point of space r; and r» from charges located at a; and . separated 2o.
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Adiabatic Invariants

Consider a mechanical system executing a finite motion in 1-dimension, characterized by some
parameter A which is related to the properties of the system.
Let’s suppose that A varies adiabatically (adidbatos in Greek: impassable). It means A varies slowly.

dX
T— <A 186
i < (186)

where 7' is the period of motion.

If X is variable then the energy F is not conserved. If A were constant the system would be
closed (i..e periodic motion with constant energy F and fixed period T'(E). But if A\ is small
AFE/At = E will also be small.

Then OE /0t < O\/0t and the E dependence on A can be expressed as some constant combination
of E and A. This constant which remains as such throughout motion is called an adiabatic invariant.

Let H(q, p, A be the aHamiltonian of the system. Then

dE  9H _ OH O

G0 on ot (187)

%—I){ %;\ depends not only on A but also on p and ¢ which may be changing rapidly. It is appropriate
to average over a period of motion

dE  d\OH

PR TIr Y (188)

and we will assume that A varies slowly. %—{{ is a function of ¢, p only, and

oH 1 [ToH
o1 ), (189)
where
i — (190)

So

and

0 a_p
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where § refers to a cycle integration.

Then
dE  d\ . 1
dt - dt 81;’ g:g
Op

The integrations are performed over paths of constant A. Along such paths the hamiltonian has
constant value E, and the momentum is a function of g and E and A, so p = p(q, E, \) and if we

differentiate respect to A the equation H (¢, p\) = F we get

oH
OH oHop _ G _ op
oX | Op oA ol

which substituted in (191) gives

dE dAgé’g
dt - dt § o

which is equivalent to

Op dE  Op O\ B
7{<6Edt+6)\8t>dq_o

Notice that if we define

Op
o\

(191)

(192)

(193)

(194)

dg
I= —
b 27
we would get
dl
-0
dt
I is an adiabatic invariant (it remains constant when \ varies). If we calculate 9/ /0 E we remember
that the period
/ dt — 7! i
and using (192)
ol Op
2T — —dq=T
"oE ~ | oE
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which is equivalent to

OF

a7 v (195)

where w = 27 /T is the vibration frequency of the system.

It is relevant to notice that (192)

dq
I = —
p27r

has a geometric meaning: the phase space of a system undergoing periodic motion is a closed curve
in (p, ¢). As the momentum is also bound it can be written as

I—//dpdq;ﬂ (196)

and this is precisely the area enclosed by the path followed by the system in phase space.
Example

The 1-D oscillator. It has
2
p 1 2 2
H=—+-
om g

w is the frequency of the oscillator. The equation of the phase space path is given by H(p,q) = E
Which is given in phase space by the ellipse in figure 3

Pmax

Qmax

il vy
S| S

Figure 3: The path of a simple 1-D harmonic oscillator in phase space
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We can see that the maximum values of p and ¢ are obtained from

2
p 1 2 2
— 4+ — =F
2m+2qu

when ¢ =0, p =0 and ¢ is maximum

2K

Qmax = )
mw

when ¢ = 0 p is maximum

and

and

and

When the parameters of the oscillator the energy is proportional to the frequency.

and p using I as a new “momentum”. The generating function is Sy = So(q, I)

Pmazx = 2mE

the area of the ellipse is
2nE
A= TdmazPmax = —
w
then
2rE
A= TdmaxPmaxr = T

1 E
I—//dpdq—
2r  w

Canonical variables

197)

(198)

(199)

(200)

Let A be constant, so that the system is closed. We carry out a canonical transformation for ¢

SO(q7E7)‘) :/p(Q7E7 )‘)dq

(201)

For a closed system (A = ct) I is only a function of the energy E. This implies we can think of
So(gq, I, ) and

<‘950> _<350>
0q ) g 0q ),
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for constant /. Then according to the formulas in (101)

oo oo , 0P
pz—afqia Qz—aipia H—H‘Fa
we get
_ 05(q, 1, ) (203)
dq
but we also get
o 850 (q’ Ia )‘)
W = —a (204)

The canonical variables I and )V are called the action variable and the angle variable respectively.
So(gq, I, ) as a generating function does not depend on time. So the new Hamiltonian H' is just
E(I) as a function of the action variable.
Hamilton’s equations in canonical variables are

- - dE(I)

I=0 W= ——= 205

i (205)

The first one just shows that F is constant. On the other hand the angle variable is a linear function
of time

AW dE(I) dE(I)
b dl - W= T dt + constant (206)
or
W = w(I)t + constant (207)

W is the phase of the oscillation. The action Sy(g, I) is a many valued function of the coordinates.
During each period the function increases by

ASy = 2r1 (208)

We should remember that
SO(q7 E? )‘) = /p(Q7 E7 )‘)dq

and

_ J pde
27
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During the same time the angle variable

Aw— A <aso> _ OAS,

=0 = =2 2
o1 or " (209
On the other hand if we expressed ¢ and p or any one-valued function F'(g, p) in terms of I and
W they would remain unchanged when )V increases by 27 (I constant). Any one function F'(gq, p)
when expressed in terms of I and }V is a periodic function of in terms of WV with period 27.

Non closed systems

Canonical variables can also be used for a system that it is not closed, in which the parameter
A is time dependent.

As before

SO(QaEvA) _/p(Q7E7)‘)dq

_ 4 rda

7=
2

but this time we have A = A(¢).

The generating function is now an explicit function of time. The new Hamiltonian H' is different
from the old one which was the energy E(I).

Let’s remember that if we transform from coordinates p, ¢ — P, () we have a generating function
F(q,Q) — ®(q, P) and then,

L 0D 0%

;= — i =— H =H+ — 210
P 5. YT ap "o 10
Then we have Sj the generating function and
050
H =E(I,)\) + —
(1N +
9S50 oA
=FE(,\ — —
(7 )+<8)\>q¢ ot
=E(I,\) + A) 211)

where A should be written expressly as A(I, V) after taking the time derivative.

Hamilton’s equations for closed systems are
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and then in our case
o1 _ _H'_ oA\
o W OW ot
remember 0Q); /0t = OH' /0 and

05 OH' dE  OA oA .
a = — ol E—’_W)\_W(I’)\)—i_ (M)W)\)\

wEW) = (gjf),\

is the oscillation frequency calculated as if A\ were constant.

Example

Write the EoM in canonical variables for a harmonic oscillator with Hamiltonian

2

b 1 2 2
H=" 4 mu’t

2m+2mw()q

V2 sinw(t) = /2L sinw()
= —F= S1nw = — SINnw
q mw? mw

p = V2Iwmcosw(t)

And
S:/pdq:/p ﬁ dw:2l/coszwdw
0 w),.,
05y 05y ow I .
A= — = [ == e -
( B >q7, <aw>t ( D >q 5w SV
Then
I=—-1 (w) cos2W
2w
W=w-+ <w> sin 2W
2w
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