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Hamilton’s equations

Sometimes it is more convenient to use generalized coordinates and generalized momenta instead
of generalized coordinates and velocities like we were doing so far: qi, q̇i → qi, pi. We assuming
that i takes values ranging from 1 to n the number of degrees of freedom corresponding to the
physical system under consideration.

The transformation of coordinates that it is required can be done utilizing a Legendre trans-
formation. Starting with the the Lagrangian we can assume that a small change in the generalized
coordinates dqi and the generalized velocities dq̇i will induce a differential transformation in the
Lagrangian function which to first order is:

dL =
∑
i

∂L

∂qi
dqi +

∑
i

∂L

∂q̇i
dq̇i

=
∑
i

ṗidqi +
∑
i

pidq̇i (1)

where the last equation is the result of substituting ∂L
∂q̇i

= pi just by definition of momentum
and ṗi = ∂L

∂qi
using Lagrange equations. But we also notice that

∑
i pidq̇i can be written as a total

differential: ∑
i

pidq̇i = d

(∑
i

piq̇i

)
−
∑
i

q̇idpi (2)

Using this result in (1)

dL =
∑
i

ṗidqi + d

(∑
i

piq̇i

)
−
∑
i

q̇idpi (3)

from which we obtain

d

(∑
i

piq̇i − L

)
= −

∑
i

ṗidqi +
∑
i

q̇idpi (4)
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or defining a new function which it is called the Hamiltonian1:

H(p, q, t) =
∑
i

piq̇i − L (5)

which is precisely what we define as the energy of the system in the Lagrangian formalism. From
this definition (4) reads:

dH = −
∑
i

ṗidqi +
∑
i

q̇idpi (6)

From where it is simple to read the Hamilton equations:

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
(7)

Notice that these are a set of 2n first order differential equations replacing the n set of second
order differential equations which are the Euler-Lagrange equations. These equations of motion in
the Hamiltonian formalism are also called the “canonical equations”.

Conservation of Energy

The total time derivative of the Hamiltonian is:

dH

dt
=
∂H

∂t
+
∑
i

∂H

∂qi
q̇i +

∑
i

∂H

∂pi
ṗi =

∂H

∂t
(8)

The last equation is because, due to Hamilton equations, q̇i = ∂H
∂pi
, ṗi = −∂H

∂qi
and then the

second term in (8) is equal to the third one. We can see then that if the Hamiltonian doesn’t depend
explicitly on time,

dH

dt
= 0 (9)

and the energy is conserved.
Like the Lagrangian, the Hamiltonian involve parameters. These parameters characterize the

physical system itself. Let λ be such a parameter.Then

dL =
∑
i

ṗidqi +
∑
i

pidq̇i +

(
∂L

∂λ

)
dλ (10)

1Sir William Rowan Hamilton (4 August 1805 – 2 September 1865) was an Irish mathematician, physicist and
astronomer.
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on the other side the Hamiltonian

dH = −
∑
i

ṗidqi +
∑
i

q̇idpi −
(
∂L

∂λ

)
dλ (11)

which implies that

(
∂H

∂λ

)∣∣∣∣∣
p,q

= −
(
∂L

∂λ

)∣∣∣∣∣
q,q̇

(12)

where p, q and q, q̇ remain constant in each case.
We can arrive at the same conclusion in a different manner. Let the Lagrangian for a given

physical system be of the form L = L0 + L′ where L′ is a small correction to L0. Then we can
define a new Hamiltonian for our system H ′ as in,

H = H0 +H ′ (13)

such that

H ′
∣∣∣
p,q

= −L′
∣∣∣
q,q̇

(14)

and (
∂H

∂t

)∣∣∣∣∣
p,q

= −
(
∂L

∂t

)∣∣∣∣∣
q,q̇

(15)

The Routhian

Let’s suppose there are generalized coordinates and velocities ρ, ξ, ρ̇, ξ̇ and we want to trans-
form them to ρ, ξ, pρ, ξ̇ where pρ is the conjugate momentum to ρ. In that case we will have

dL =
∂L

∂q
dq +

∂L

∂q̇
dq̇ +

∂L

∂ξ
dξ +

∂L

∂ξ̇
dξ̇ = ṗdq + pdq̇ +

∂L

∂ξ
dξ +

∂L

∂ξ̇
dξ̇ (16)

From where we can rearrange

d(L− pq̇) = ṗdq + pdq̇ +
∂L

∂ξ
dξ +

∂L

∂ξ̇
dξ̇ (17)

And we can define the Routhian as the following function

R(q, p, ξ, ξ̇) = pq̇ − L (18)

3



from where we obtain

dR = −ṗdq + q̇dp− ∂L

∂ξ
dξ − ∂L

∂ξ̇
dξ̇ (19)

and the following equations of motion:

q̇ =
∂R

∂p
, ṗ = −∂R

∂q

∂L

∂ξ
= −∂R

∂ξ
,

∂L

∂ξ̇
= −∂R

∂ξ̇
(20)

with the addition of the second order differential equation

d

dt

(
∂R

∂ξ̇

)
=
∂R

∂ξ
(21)

In conclusion the Routhian is a Hamiltonian for the ρ coordinate and a Lagrangian for ξ. If we
want to write an expression for the energy of the system in terms of the Routhian

E = q̇
∂L

∂q̇
+ ξ̇

∂L

∂ξ̇
− L = pq̇ + ξ̇

∂L

∂ξ̇
− L (22)

which gives explicitly in terms of R

E = R− ξ̇ ∂R
∂ξ̇

(23)

Why bothering defining a function such that the Routhian? When a coordinate is cyclic it might be
a convenient way of finding the equations of motion. For example, if ρ is a cyclic coordinate the
Routhian depends only on p, ξ, ξ̇. Using (20) we inmediatly find that

ṗ = −∂R
∂q

= 0 (24)

from where we can quickly conclude that p is a constant. Also in this case

d

dt

(
∂R(p, ξ, ξ̇)

∂ξ̇

)
=
∂R(p, ξ, ξ̇)

∂ξ
(25)

where it is clear that only ξ is involved.
Once ξ is obtained we can solve

q̇ =
∂R

∂p
(26)
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by direct integration.

Poisson Brackets

Let f(p, q, t) be some function of the coordinates, momentum and time, Its total time derivative
is

df

dt
=
∂f

∂t
+
∑
k

(
∂f

∂qk
q̇k +

∂f

∂pk
ṗk

)
(27)

q̇k and ṗk are given by the canonical equations q̇i = ∂H
∂pi

ṗi = −∂H
∂qi

. so we can substitute

df

dt
=
∂f

∂t
+
∑
k

(
∂f

∂qk

∂H

∂pk
− ∂f

∂pk

∂H

∂qk

)
(28)

or

df

dt
=
∂f

∂t
+ [H, f ] (29)

where

[H, f ] =
∑
k

(
∂f

∂qk

∂H

∂pk
− ∂f

∂pk

∂H

∂qk

)
(30)

[H, f ] is called the Poisson bracket of h and f .
If the quantity f is an integral of motion it fulfills df/dt = 0 so in (29) we obtain

∂f

∂t
+ [H, f ] = 0 (31)

If the function f is additionally independent explicitly of time,

[H, f ] = 0 (32)

The Poisson bracket of the Hamiltonian and the function which is an integral of motion is zero.
This definition can be extended to two functions

[f, g] =
∑
k

(
∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

)
(33)
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Properties of the Poisson bracket

Following the definition it is easy to prove the following properties

[f, g] = −[g, f ] (34)

[f, c] = 0 (35)

if c is a constant. Also if we have to functions f1, f2,

[f1 + f2, g] = [f1, g] + [f2, g] (36)

[f1 × f2, g] = f1[f2, g] + f2[f1, g] (37)

If we want to take the time derivative of the Poisson bracket (33)

∂

∂t
[f, g] =

[
∂f

∂t
, g

]
+

[
f,
∂g

∂t

]
(38)

If one of the functions f and g is one of the momenta or coordinates the Poisson bracket reduces
to a partial derivative

[f, qk] =
∂f

∂pk
(39)

[f, pk] =
∂f

∂qk
(40)

From where we can obtain

[qi, qk] = 0 [pi, pk] = 0 [pi, qk] = δik (41)

If we have three functions

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0 (42)

This is called the Jacobi’s identity. It can be proved by direct calculation (brute force). But it’s
quite important in defining the nature of the Poisson brackets. We will prove it in the following
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manner. Let’s define by introducing a square matrix J made up of Poisson brackets. i.e. equation
(41) can be written in the following manner,

Jij = [η,η] (43)

where [η,η] is a matrix whose element i, j is [ηi, ηj ] We can introduce the following functions
associated to partial derivatives respect to the corresponding canonical variable

fi ≡
∂f

∂ηi
, gij ≡

∂g

∂ηi∂ηj
(44)

Using this notation the Poisson bracket of f and g can be expressed as

[f, g] = fiJijgj (45)

where, of course, Jij is the i, j element of the matrix Jij defined by (43). Considering now in (42)
the first Poisson bracket:

[f, [g, h]] = fiJij [g, h]j = fiJij(gkJklhl)j . (46)

Due to the fact that the elements Jij are constants, the derivative with respect to η does not affect
them and we then have

[f, [g, h]] = fiJij(gkJklhlj + gkjJklhl). (47)

where remember that the two subindices in (f, g, h) refer to the corresponding second partial
derivatives respect to the canonical variables. And the other two Poisson brackets can be ob-
tained from (47) by cyclic permutation of f, g, h. There will be six terms in total each, each being
a quadruple sum over dummy indices i, j, k, adn l. Consider now the term in (47) which involves
a second derivative of h

JijJklfigkhlj , (48)

It is not difficult to see that the only other term involving a second derivative of h will appear in the
second double bracket in the Jacobi’s identity (42)

[g, [h, f ]] = gkJkl(hjJjifi)l. (49)

where the term containing the second derivative in h is

JijJklfigkhjl, (50)

but comparing (48) and (50) hlj = hjl (the order of the derivatives does not change the results).
The sum of both terms is then

(Jij + Jji)Jklfigkhlj = 0, (51)
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due to the antisymmetry of J. Th eother four terms are cyclic permutations and the same process
performed above can be applied to the second derivatives of f and g, verifying Jacobi’s identity.

Poisson’s theorem

If f and g are integrals of motion, their Poisson bracket is also an integral of motion,

[f, g] = constant (52)

Proof

Let’s apply the Jacobi’s identity (42) using as a function h, the Hamiltonian of the system itself,
ie. h = H .

[H, [f, g]] + [f, [g,H]] + [g, [H, f ]] = 0 (53)

but due to the fact that f and g are integrals of motion

[H, g] = 0 = [H, f ] (54)

So in (53) the only surviving term is

[H, [f, g]] = 0 (55)

which indicates that [f, g] is indeed an integral of motion as well.

An alternative and instructive way of also proving this result is by directly calculating the time
derivative of the Poisson bracket using (29):

d

dt
[f, g] =

∂

∂t
[f, g] + [H, [f, g]] (56)

and now using (38)

∂

∂t
[f, g] =

[
∂f

∂t
, g

]
+

[
f,
∂g

∂t

]
(38)

we get

d

dt
[f, g] =

[
∂f

∂t
, g

]
+

[
f,
∂g

∂t

]
− [f, [g,H]]− [g, [H, f ]]

=

[
∂f

∂t
+ [H, f ], g

]
+

[
f,
∂g

∂t
+ [H, g]

]
=

[
df

dt
, g

]
+

[
f,
dg

dt

]
(57)
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and clearly if f and g are integrals of motion it proves the theorem.

The action as a function of the coordinates

Let’s consider the action as a function of the upper limit of integration t2, i.e.

S =

∫ t2

t1

Ldt (58)

Looking at a variation of the action

δS =

[
∂L

∂q̇
δq

]t2
t1

+

∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δqdt (59)

The second term in the above equation, the integral, is zero, because of Lagrange’s equations.
For the first term in the sum we put δq(t1) = 0 and δq(t2) = δq. Then (59) becomes

δS = pδq (60)

or assuming n degrees of freedom we get

δS =
∑
i

piδqi (61)

which implies

∂S

∂qi
= pi (62)

On the other hand from the definition of action

dS

dt
= L (63)

an calculating explicitly

dS

dt
=
∂S

∂t
+
∑
i

∂S

∂qi
q̇i =

∂S

∂t
+
∑
i

piq̇i (64)

From where we have

∂S

∂t
=
dS

dt
−
∑
i

piq̇i = L−
∑
i

piq̇i = −H (65)

where we use (63) and the definition of the Hamiltonian (5). From here we can write

dS =
∑
i

pidqi −Hdt (66)
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Let’s assume now that the change in S occurs due to variation in the coordinates and time at the
beginning and end of the path

dS =
∑
i

p
(2)
i dq

(2)
i −H

(2)dt(2) −
∑
i

p
(1)
i dq

(1)
i −H

(1)dt(1) (67)

The only possible motion is the one for which dS is a perfect differential (i.e.dS = 0). The
principle of action imposes restrictions on the range of possible motions. Interesting enough the
Hamilton’s equations can be derived from defining the action

S =

∫ (∑
i

pidqi −Hdt

)
(68)

we then have

δS =

∫ (
δpdq + pdδq − ∂H

∂q
δqdt− ∂H

∂p
δpdt

)
(69)

Integrating by parts the second term we get

δS =

∫
δp

(
dq − ∂H

∂p
dt

)
+ [p, δq]−

∫
δq

(
dp+

∂H

∂q

)
dt (70)

at the limits of integration we have δq = 0. We are left with two integrals where the integrands will
have to vanish independently because δp and δq vary independently and arbitrarily. For this to be
the case we need

dq =
∂H

∂p
dt dp = −∂H

∂q
dt (71)

and dividing by dt are the Hamilton’s equations.

Maupertuis’ Principle

There is a simplified form of the Principle of least action which is useful if we are more inter-
ested in finding the path to be followed by a physical system than the precise position as a function
of time.
Let’s assume that the energy is conserved, and consequently both the Hamiltonian and the La-
grangian do not depend explicitly of time.

H(p, q) = E = constant (72)

We will also allow for a variation of the final time we are considering for a given path (instead of
t0, t we will consider t0, t+ δt. We have

δS = −Hδt (73)
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We are comparing not all possible virtual motions but only those which conserve the energy,

δS + Eδt = 0 (74)

Writing the action as

S =

∫ (∑
i

pidqi −Hdt

)
(75)

From where we obtain

S =

∫ ∑
i

pidqi − E(t− t0) (76)

The first term above is called the abbreviated action

S0 =

∫ ∑
i

pidqi (77)

The abbreviated action fulfills

δS0 = 0 (78)

It has a minimum with respect to all paths which satisfy the law of conservation of energy and pass
through the final point at any instant.
In order to use this principle, the momenta need to be expressed as a functions of q and dq.

pi =
∂

∂q̇
L(q, q̇) (79)

and

E = E(q, q̇) (80)

Expressing dt in terms of qi and dqi in (80) and substituting in (79) we will have the momenta
in terms of qi and dqi with E as a parameter. The variational principle obtained in this manner is
called the Maupertuis’ Principle.

In the case that the Lagrangian takes its original form

L =
1

2

∑
ik

aik(q)q̇iq̇k − U(q) (81)
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where the momenta are

pi =
∂L

∂q̇i
=
∑
k

aik(q)q̇k (82)

and

E =
1

2

∑
ik

aik(q)q̇iq̇k + U(q) (83)

where the last equation gives

dt =

√∑
ik aik(q)dqidqk
2(E − U)

(84)

In order to obtain an expression where we useE as a parameter in (77) we substitute in
∑

i pidqi =∑
ik aik

dqk
dt dqi and then

S0 =

∫ √
2(E − U)

∑
ik

aik(q)dqidqk (85)

In the case of a single particle we have

T =
1

2
m

(
dl

dt

)2

(86)

from where

S0 =

∫ √
2(E − U)mdl2 (87)

then Maupertuis

δS0 = δ

∫ √
2(E − U)mdl = 0 (88)

and if If the particle is free U = 0 and

√
2Em

∫
dl = 0 (89)

which shows that the straight line is the shortest path in the absence of U . Returning to (76)

S =

∫ ∑
i

pidqi − E(t− t0) (76)

12



we will consider a variation respect to E

δS =
∂S0
∂E

δE − (t− t0)δE − Eδt (90)

Substituting in (74)

δS + Eδt = 0 (74)

we get

∂S0
∂E

= t− t0 (91)

where S0 =
∫ √

2(E − U)
∑

ik aik(q)dqidqk and taking the derivative we get∫ √∑
ik aik(q)dqidqk
2(E − U)

= t− t0 (92)

which is the integral of (84)

dt =

√∑
ik aik(q)dqidqk
2(E − U)

Together with the equation for the path it determines the motion.

Canonical Transformations

In the Lagrangian formalism we can have s generalized coordinates qi → Qk such that Qi =
Qi(q, t). In the Lagrangian formalism ew have 2s generalized coordinates which can be trans-
formed

q, p→ Qi = Qi(p, q, t), Pi = Pi(p, q, t). (93)

But the equations do not retain their canonical form under all possible transformations like (93).
What are the conditions that need to be satisfied so that with new coordinates P,Q

Q̇i =
∂H ′

∂Pi
, Pi = −∂H

′

∂Qi
(94)

for some H ′.

One class of transformations is particularly important. These are called canonical transforma-
tions. We know that Hamilton’s equations can be obtained from

δ

∫
(
∑
i

pidqi −Hdt) = 0 (95)
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If the new coordinates P,Q satisfy the Hamilton’s Principle

δ

∫
(
∑
i

PidQi −H ′dt) = 0 (96)

Then the difference between (95) and (96) should just be a function of coordinates and time∑
pidqi −Hdt =

∑
PidQi −H ′dt+ dF (97)

which we can write as

dF =
∑

pidqi −
∑

PidQi + (H ′ −H)dt (98)

from where we obtain

pi =
∂F

∂qi
, Pi =

∂F

∂Qi
, H ′ = H +

∂F

∂t
(99)

F is called the generating function. We assume F = F (q,Q, t). When F is known equation
(99) give the relationship between p, q and P,Q as well as the new Hamiltonian. In some situations
it may be more convenient to give F in terms not of q,Q but of q, P .

In these cases we apply a Legendre transformation

d(F +
∑

PiQi) =
∑
i

pidqi +
∑

QidP − i+ (H ′ −H)dt (100)

If we call F +
∑
PiQi = Φ(q, P, t) we have

pi =
∂Φ

∂qi
, Qi =

∂Φ

∂Pi
, H ′ = H +

∂Φ

∂t
(101)

Similarly we can obtain canonical transformations involving generating functions of p,Q or p, P .
Always H ′ −H is the time derivative of the generating function. If f does not depend of the time
H ′ = H . Notice also that with this formalism we can have Qi = pi and Pi = −qi. This is just an
exchange of names for the variables. In this context of arbitrariness of the meaning of p and q, they
are called 5canonically conjugated quantities.

Example

Consider the simple harmonic oscillator

H =
p2

2m
+

1

2
mω2q2 (102)
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where ω =
√

k
m . Let’s consider

F1(q,Q, t) = qQ (103)

From where using the relationships established in equation ( 101) we get

pk =
∂F1

∂qk
, Pk =

∂F1

∂Qk
, H ′ = H +

∂F1

∂t
(104)

and consequently we find p = Q and P = −q and

H ′ =
p2

2m
+

1

2
mω2q2 + 0 =

Q2

2m
+

1

2
mω2p2 (105)

and

Q̇ =
∂H ′

∂P
= mω2P, and Ṗ =

∂H ′

∂Q
= −Q

m
(106)

which shows that Q,P is physically equivalent to q, p.

General Theorem about Poisson brackets

The conditions relating canonically conjugated variables can be expressed in terms of the Pois-
son brackets.
If we have the Poisson brackets associated to two functions f and g calculated as derivatives respect
to the coordinates p, q and P,Q then

[f, g]p,q = [f, g]P,Q (107)

This can be demonstrated by direct calculation using the canonical transformations explicitly. But
it can also be demonstrated in the following manner. We notice that in equations (99) and (101)
the time appears as a parameter. This makes it sufficient to prove (107) for functions that do not
depend explicitly on time.
Let’s think that g is the Hamiltonian of some system. Then following (29)

[f, g]p,q = −df
dt

(108)

In the equation above df/dt depends only of the physical system it describes, of course, and not on
the variables utilized to describe it. Consequently the Poisson bracket [f, g] does not change when
transforming from one set of canonical coordinates to the other. Using together (41) and (108) we
get that P,Q need to satisfy

[Qi, Qk]p,q = 0 [Pi, Pk]p,q = 0 [Pi, Qk]qp = δik (109)

15



if the transformation q, p→ P,Q is canonical.

Notice that p(t), q(t) can be thought as they evolve with time as a set of canonical transforma-
tions, where S the action is the generating function.

Liouville’s Theorem

Figure 1: The phase space

The phase space is made up of the generalized coordinates and momenta. For a system with n
degrees of freedom it is 2n dimensional. A point in the phase space corresponds to a value of the
generalized coordinates like the position of a physical system and the corresponding generalized
momenta at the same time (ie. a state of the system).
As the system evolves with time the result of its motion represented as a curve in the phase space
is called its phase path.

dΓ = dq1 × dq2 × ....× dqn−1 × dqn × dp1 × dp2 × ....× dpn−1 × dpn (110)

is an element of volume in phase space.

Liouville’s Theorem states that ∫
dΓ = constant (111)

i.e. the integral
∫
dΓ over some region of the phase space is invariant under canonical transforma-

tions.
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For example let’s consider variables p, q which through a canonical transformation are replaced by
P,Q. We want to prove that∫

dΓ = dq1 × ...dqn × dp1 × ...× dpn =

∫
dQ1 × ...dQn × dP1 × ...× dPn (112)

Due to the transformation of coordinates∫
dQ1 × ...dQn × dP1 × ...× dPn =

∫
∂(Q1...QnP1...Pn)

∂(q1...qnp1...pn)
× dq1 × ...dqn × dp1 × ...× dpn

(113)

where

D =
∂(Q1...QnP1...Pn)

∂(q1...qnp1...pn)
(114)

is the Jacobian of the transformation (the determinant of the matrix of the coordinate transfor-
mation that would take qi, pi to Qi, Pi). All we need to prove then is that D = 1.

We can divide numerator and denominator in (114) by ∂(q1...qnP1...Pn)

D =

∂(Q1...QnP1...Pn)
∂(q1...qnP1...Pn)

∂(q1...qnp1...pn)
∂(q1...qnP1...Pn)

As we can see in this Jacobian P1...Pn appears both in the numerator and denominator of the
numerator. The same happens with q1...qn in the denominator. so we get

D =

∂(Q1...Qn)
∂(q1...qn) P=constant
∂(p1...pn)
∂(P1...Pn) q=constant

The Jacobian in the numerator is by definition, a determinant of order n whose ith row and
kth column is ∂Qi/∂qk. Using (101) we can write it in terms of the generating function Φ as
∂Qi/∂qk = ∂2Φ/∂qk∂Pi. Following the same line of thought we get in the denominator that the
ik element of the determinant is ∂2Φ/∂qi∂Pk. This means that the two determinants only differ
in the interchange of row for columns. Being equal it shows then thatD = 1, completing the proof.

Significance of the Liouville’s theorem:
If we have a system of particles undergoing an evolution over time determined by the equations of
motion, as they move in phase space the volume they occupy remains unchanged∫

dΓ = constant
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The Hamilton-Jacobi equation

When we considered before the action as a function of coordinates and time -as in (65)- it was
shown that

∂S

∂t
+H(p, q, t) = 0 (115)

and

∂S

∂qi
= pi (116)

We could generalize this result in this manner

∂S

∂t
+H

(
q1...qn;

∂S

∂q1
...
∂S

∂qn
; t

)
= 0 (117)

(117) is called the Hamilton-Jacobi equation. Recapping, we have so far studied the Lagrange’s
equations, the canonical equations and now the Hamilton-Jacobi equations. The first one is a sec-
ond order system of differential equations. The last two are first order differential equations.

The independent variables in the H-J equations are the time and the coordinates. For a system
with n degrees of freedom a complete integral must contain n + 1 arbitrary constants. There will
be one constant of integration A such that

S = f(t, q1...qn;α1...αn) +A (118)

where α1...αn and A are the n+ 1 arbitrary constants of integration.

We will make a canonical transformation from q, p using f(t, q, α) as a generating function
and α1...αn as the new momenta.
Let the new coordinates be β1...βn. The generating function then will satisfy

pi =
∂f

∂qi
, βi =

∂f

∂αi
, H ′ = H +

∂f

∂t
(119)

And f will also satisfy the Hamilton-Jacobi equations (117), so

H ′ = H +
∂f

∂t
= H +

∂S

∂t
= 0 (120)

we also have α̇i = 0 due to α1...αn being constants and β̇i = 0 due to βi = ∂f
∂αi

.
The n coordinates qi can be expressed in terms of the time and the 2n constants α and β. This give
the general integral of motion. The H-J method continues in this manner. After finding

S = f(t, q1...qn;α1...αn) +A (121)
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we calculate

∂S

∂αi
= βi (122)

which gives the coordinates as functions of time and of the 2n arbitrary constants. Then the mo-
menta are

pi =
∂S

∂qi
(123)

If the system is conservative, the H-J takes a simpler form

S = S0(q)− Et (124)

and substituting in

∂S

∂t
+H

(
q1...qn;

∂S

∂q1
...
∂S

∂qn
; t

)
= 0 (125)

gives the solution for the abbreviated action S0

H

(
q1...qn;

∂S0
∂q1

...
∂S0
∂qn

)
= E (126)

Separation of variables

Let’s assume that one coordinate, i.e. q1, and ∂S/∂q1 appear in a particular functional form

φ

(
q1,

∂S

∂q1

)
which does not involve any of the other coordinates or derivatives or the time, i.e.

Φ

(
qi, t,

∂S

∂qi
,
∂S

∂t
, φ

(
q1,

∂S

∂q1

))
= 0 (127)

where i 6= 1 We look for a solution of the form

S = S′(qi, t) + S1(q1), (128)

We can plug this in (127) we get

Φ

(
qi, t,

∂S′

∂qi
,
∂S′

∂t
, φ

(
q1,

∂S1
∂q1

))
= 0 (129)
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If we assume that we already found (128) when substituted in (129) it must become an identity
valid for any value of q1. But if this is true then φ must be a constant. So we can split (129) in two
separate equations:

φ

(
q1,

dS

dq1

)
= α1 (130)

and

Φ

(
qi, t,

∂S′

∂qi
,
∂S′

∂t
, α1

)
= 0 (131)

where α1 is an arbitrary constant. (130) is an ordinary differential equation (ODE) and S1 is then
obtained by integration. (131) involves fewer variables. If we could follow the same procedure for
all the qi then we would get a full set of ODEs. As a result the H-J equation could be solved by
quadratures.

If we are dealing with a conservative system we have to separate n variables (assuming n the
degrees of freedom of the system).
Once the separation is complete we shall get

S =
∑
k

Sk(qk, t, α1, α2...αn)− E(α1, α2...αn)t (132)

Sk depends on only one coordinate. The energy E as a function of α1, α2...αn is obtained by
substituting S0 =

∑
Sk in

H

(
q1...qn,

∂S0
∂q1

...
∂S0
∂qn

)
= E (133)

A particular case is when one variable is cyclic, ie. let’s assume q1; q1 then is not appearing in
the Hamiltonian nor in the H-J equations. In that case the function φ(q1, ∂S/∂q1) → ∂S/∂q1 and
then S1 = α1q1 and we obtain

S = S′(qi, t) + α1q1 (134)

and α1 is just the value of p1 = ∂S/∂q1 which corresponds to the cyclic coordinate. If we have a
conservative system then −Et corresponds to the “cyclic” coordinate t.
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Examples

a) Spherical coordinates (r, θ, φ)

H =
1

2

(
p2r +

p2θ
r2

+
p2φ

r2 sin2 θ

)
+ U(r, θ, φ) (135)

We can choose

U(r, θ, φ) = a(r) +
b(θ)

r2
+

c(φ)

r2 sin2 θ
(136)

where a(r), b(θ), c(φ) are arbitrary functions. We can simplify the problem a bit by assuming that
the potential doe snot depend on φ.

U(r, θ, φ) = a(r) +
b(θ)

r2
(137)

The H-J equations for S0 are

1

2m

(
∂S0
∂r

)2

+ a(r) +
1

2mr2

[(
∂S0
∂θ

)2

+ 2mb(θ)

]
+

1

2mr2 sin2 θ

(
∂S0
∂φ

)2

= E (138)

Since φ is cyclic we look for

S0 = pφφ+ S1(r) + S2(θ) (139)

which plugged in the equation (138) gives(
dS2
dθ

)2

+ 2mb(θ) +
p2φ

sin2 θ
= β (140)

1

2m

(
dS1
dr

)2

+ a(r) +
β

2mr2
= E (141)

Integrating we get

S = −E + pφφ+

∫ √
β − 2mb(θ)−

p2φ

sin2 θ
dθ +

∫ √
2m (E − a(r))− β

r2
dr (142)

where the arbitrary constants are pφ, β and E.
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b) parabolic coordinates

We can transform from cylindrical to parabolic coordinates (ρ, φ, z) → (ξ, η, φ), where the
transformation is performed through

z =
1

2
(ξ − η) ρ =

√
ξη (143)

where 0 < ξ < ∞ and 0 < η < ∞. Surfaces of constant ξ and η are paraboloids of revolution
with z the axis of symmetry. Notice that in (143) we can identify a relationship with the spherical
radius r

ξ = r + z η = r − z (144)

If we calculate the Lagrangian in cylindrical coordinates

L =
1

2
(ρ̇2 + ρ2φ̇2 + ż2)− U(ρ, φ, z) (145)

Substituting ξ, η, φ we get

L =
1

8
m(ξ + η)

(
ξ̇2

ξ
+
η̇2

η

)
+

1

2
mξηφ̇2 − U(ξ, η, φ) (146)

where the moment are

pξ =
1

4
m(ξ + η)

ξ̇

ξ
(147)

pη =
1

4
m(ξ + η)

η̇

η
(148)

pφ =mξηφ̇ (149)

and the Hamiltonian

H =
2

m

ξp2ξ + ηp2η

ξ + η
+

p2φ
2mξη

+ U(ξ, η, φ) (150)

A physically interesting potential is

U =
a(ξ) + b(η)

ξ + η
=
a(r + z) + b(r − z)

2r
(151)

So

2

m(ξ + η

[
ξ

(
∂S0
∂ξ

)2

+ η

(
∂S0
∂η

)2
]

+
1

2mξη

(
∂S0
∂φ

)2

+
a(ξ) + b(η)

ξ + η
= E (152)
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φ can be separated as pφφ multiplying by m(ξ + η) and then we would get

2ξ

(
∂S0
∂ξ

)2

+ma(ξ)−mEξ +
p2φ
2ξ

+ 2η

(
∂S0
∂η

)2

+mb(η)−mEη +
p2φ
2η

= 0 (153)

and making

S0 = pφφ+ S1(ξ) + S2(η) (154)

we get

2ξ

(
dS1
dξ

)2

+ma(ξ)−mEξ +
p2φ
2ξ

= β (155)

2η

(
dS2
dη

)2

+mb(η)−mEη +
p2φ
2η

= β (156)

Integration gives

S = −Et+ pφφ+

∫ √
m

2
E +

β

2ξ
− ma(ξ)

2ξ
−

p2φ
4ξ2

dξ +

∫ √
m

2
E − β

2η
− mb(η)

2η
−

p2φ
4η2

dη

(157)

where the arbitrary constants are pφ, β and E.

b) Elliptic coordinates

These are ξ, η, φ defined

ρ = σ
√

(ξ2 − 1)(1− η2), z = σξη (158)

where σ is a parameter and the range for ξ, η is 1 < ξ < ∞, −1 < η < 1. If A1 and A2 are
points on the z axis they have

z =± σ

r1 =
√

(z − σ)2 + ρ2 (159)

r2 =
√

(z + σ)2 + ρ2

Using (158)

r1 =σ(ξ − η) r2 = σ(ξ + η) (160)

ξ =
r2 + r1

2σ
η =

r2 − r1
2σ

(161)
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The Lagrangian can be easily transformed to elliptical coordinates from cylindrical ones:

1

2
mσ2(ξ2 − η2)

(
ξ̇2

ξ2 − 1
+

η̇2

1− η2

)
+

1

2
mσ2(ξ2 − 1)(1− η2)φ̇2 − U(ξ, η, φ) (162)

And from it the Hamiltonian is

H =
1

2mσ2(ξ2 − η2)

[
(ξ2 − 1)p2ξ + (1− η2)p2η +

(
1

ξ2 − 1
+

1

1− η2

)
p2φ

]
+ U(ξ, η, φ)

(163)

A physically interesting case for U is

U =
a(ξ) + b(η)

ξ2 − η2
=

σ2

r1r2

{
a

(
r2 + r1

2σ

)
+ b

(
r2 − r1

2σ

)}
(164)

a(ξ) and b(η) are arbitrary functions. The result is

S = −Et+ pφφ+

∫ √
2mσ2E +

β − 2mσ2a(ξ)

ξ2 − 1
−

p2φ
(ξ2 − 1)2

dξ+

∫ √
2mσ2E − β + 2mσ2b(η)

1− η2
−

p2φ
(1− η2)2

dη (165)

Note

Surfaces of constant ξ are ellipsoids which in canonical form can be expressed:

z2

σ2ξ2
+

ρ2

σ2(ξ2 − 1)
= 1 (166)

Their foci are A1 and A2.
The surfaces of constant η are hyperboloids

z2

σ2η2
+

ρ2

σ2(1− η2)
= 1 (167)

Also with foci A1 and A2.

Example

Find a complete integral of the H-J equation for a motion of a particle in a field U = α/r−Fz
( a Coulomb and a uniform field). Find a conserved function of the coordinates and the momenta
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that is specific to this motion.

Solution

The field is

U =
a(ξ) + b(η)

ξ + η
=
a(r + z) + b(r − z)

2r
(168)

where the coordinates are the parabolic ones

ξ = r + z η = r − z (169)

and

a(ξ) = α− 1

2
Fξ2

b(η) = α+
1

2
Fη2 (170)

and then the solution is given by (157)

S = −Et+ pφφ+

∫ √
1

2
mE +

β

2ξ
− ma(ξ)

2ξ
=

p2φ
4ξ2

dξ+

∫ √
1

2
mE − β

2η
− mb(η)

2η
−

p2φ
4η2

dη

β can be determined from (155) and (156)

2ξp2ξ +ma(ξ)−mEξ +
p2φ
2ξ

= β (171)

2ηp2η +mb(η)−mEη +
p2φ
2η

= β (172)

Subtracting

2ξp2ξ − 2ηp2η +ma(ξ)−mb(η)−mEξ +mEη +
p2φ
2ξ
−
p2φ
2η

= 2β (173)

Transforming from pξ and pη to pρ = ∂S/∂ρ and pz = ∂S/∂z we get

β = −m

[
αz

r
+
pρ
m

(zpρ − ρpz) +
p2φ
mρ2

z

]
− 1

2
mFρ2 (174)
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Compare this with the conservation law discussed in formulas (94) through (95) from Lesson
4 (page 19).

~v × ~M + α
~r

r
(175)

which is a conserved quantity for a particle moving in the effective potential

Ueff =
α

r
+

M2

2mr2
(176)

for potentials U = α/r
Let’s calculate the total derivative of (175) respect to time:

d

dt

(
~v × ~M + α

~r

r

)
(177)

we get

~̇v × ~M + α
~v

r
− α(~v · ~r) ~r

r3
(178)

Since M = m~r × ~v we have

m~r(~v · ~̇v)−m~v(~r · ~̇v) + α
~v

r
− α r

r3
(~v · ~r) (179)

Using that m~̇v = α ~r
r3

we obtain

d

dt
(~v × ~M + α

~r

r
) = 0 (180)

The direction is along the major axis from the focus to the perihelion and its magnitude is αe.

Example 2

Find the H-J equations of motion if the field is

U =
α1

r1
+
α2

r2
(181)

This is he Coulomb field of two fixed charges at a distance 2σ apart.

Solution

In this case we can use elliptical coordinates. The field is

U =
a(ξ) + b(η)

ξ−η2
(182)
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with

a(ξ) =
(α1 + α2)ξ

σ
, a(ξ) =

(α1 − α2)η

σ
(183)

The action is given by (165)

S = −Et+ pφφ+

∫ √
2mσ2E +

β − 2mσ2a(ξ)

ξ2 − 1
−

p2φ
(ξ2 − 1)2

dξ+

∫ √
2mσ2E − β + 2mσ2b(η)

1− η2
−

p2φ
(1− η2)2

dη

with the conserved quantities given by

β =σ2

(
p2 +

p2φ
ρ2

)
−M2 + 2mσ(α1 cos θ1 + α2 cos θ2) (184)

M2 =(~r × ~p)2 = p2z2 + p2z + r2
p2φ
ρ2
− 2zρpzpρ (185)

Figure 2: The field at a point of space r1 and r2 from charges located at α1 and α2 separated 2σ.
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Adiabatic Invariants

Consider a mechanical system executing a finite motion in 1-dimension, characterized by some
parameter λ which is related to the properties of the system.
Let’s suppose that λ varies adiabatically (adiábatos in Greek: impassable). It means λ varies slowly.

T
dλ

dt
� λ (186)

where T is the period of motion.

If λ is variable then the energy E is not conserved. If λ were constant the system would be
closed (i..e periodic motion with constant energy E and fixed period T (E). But if ∆λ is small
∆E/∆t = Ė will also be small.
Then ∂E/∂t ∝ ∂λ/∂t and the E dependence on λ can be expressed as some constant combination
ofE and λ. This constant which remains as such throughout motion is called an adiabatic invariant.

Let H(q, p, λ be the aHamiltonian of the system. Then

dE

dt
=
∂H

∂t
=
∂H

∂λ

∂λ

∂t
(187)

∂H
∂λ

∂λ
∂t depends not only on λ but also on p and q which may be changing rapidly. It is appropriate

to average over a period of motion

dE

dt
=
dλ

dt

∂H

∂λ
(188)

and we will assume that λ varies slowly. ∂H∂λ is a function of q, p only, and

∂H

∂λ
=

1

T

∫ T

0

∂H

∂λ
dt (189)

where

q̇ =
∂H

∂p
(190)

So

dt =
dq
∂H
∂p

and

T =

∫ T

0
dt =

∮
dq
∂H
∂p
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where
∮

refers to a cycle integration.
Then

dE

dt
=
dλ

dt

∮ ∂H
∂λ
∂H
∂p

dq
1∮ dq
∂H
∂p

(191)

The integrations are performed over paths of constant λ. Along such paths the hamiltonian has
constant value E, and the momentum is a function of q and E and λ, so p = p(q, E, λ) and if we
differentiate respect to λ the equation H(q, pλ) = E we get

∂H

∂λ
+
∂H

∂p

∂p

∂λ
= 0→

∂H
∂λ
∂H
∂p

= −∂p
∂λ

which substituted in (191) gives

dE

dt
=
dλ

dt

∮ ∂p
∂λdq∮ ∂p
∂Edq

which is equivalent to ∮ (
∂p

∂E

dE

dt
+
∂p

∂λ

∂λ

∂t

)
dq = 0 (191)

Notice that if we define

I ≡
∮
p
dq

2π
(192)

we would get

dI

dt
= 0 (193)

I is an adiabatic invariant (it remains constant when λ varies). If we calculate ∂I/∂E we remember
that the period

T =

∫ T

0
dt =

∮
dq
∂H
∂p

and using (192)

2π
∂I

∂E
=

∮
∂p

∂E
dq = T (194)
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which is equivalent to

∂E

∂I
= ω (195)

where ω = 2π/T is the vibration frequency of the system.

It is relevant to notice that (192)

I ≡
∮
p
dq

2π

has a geometric meaning: the phase space of a system undergoing periodic motion is a closed curve
in (p, q). As the momentum is also bound it can be written as

I =

∫ ∫
dpdq

1

2π
(196)

and this is precisely the area enclosed by the path followed by the system in phase space.

Example

The 1-D oscillator. It has

H =
p2

2m
+

1

2
mω2q2

ω is the frequency of the oscillator. The equation of the phase space path is given by H(p, q) = E
Which is given in phase space by the ellipse in figure 3

Figure 3: The path of a simple 1-D harmonic oscillator in phase space
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We can see that the maximum values of p and q are obtained from

p2

2m
+

1

2
mω2q2 = E (197)

when q̇ = 0, p = 0 and q is maximum

qmax =

√
2E

mω2

when q = 0 p is maximum

pmax =
√

2mE

and the area of the ellipse is

A = πqmaxpmax =
2πE

ω
(198)

and then

A = πqmaxpmax =
2πE

ω
(199)

and

I =

∫ ∫
dpdq

1

2π
=
E

ω
(200)

When the parameters of the oscillator the energy is proportional to the frequency.

Canonical variables

Let λ be constant, so that the system is closed. We carry out a canonical transformation for q
and p using I as a new “momentum”. The generating function is S0 = S0(q, I)

S0(q, E, λ) =

∫
p(q, E, λ)dq (201)

For a closed system (λ = ct) I is only a function of the energy E. This implies we can think of
S0(q, I, λ) and (

∂S0
∂q

)
E

=

(
∂S0
∂q

)
I

(202)
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for constant I . Then according to the formulas in (101)

pi =
∂Φ

∂qi
, Qi =

∂Φ

∂Pi
, H ′ = H +

∂Φ

∂t

we get

p =
∂S0(q, I, λ)

∂q
(203)

but we also get

W =
∂S0(q, I, λ)

∂I
(204)

The canonical variables I andW are called the action variable and the angle variable respectively.
S0(q, I, λ) as a generating function does not depend on time. So the new Hamiltonian H ′ is just
E(I) as a function of the action variable.
Hamilton’s equations in canonical variables are

İ = 0 Ẇ =
dE(I)

dI
(205)

The first one just shows that E is constant. On the other hand the angle variable is a linear function
of time

dW
dt

=
dE(I)

dI
→W =

dE(I)

dI
dt+ constant (206)

or

W = ω(I)t+ constant (207)

W is the phase of the oscillation. The action S0(q, I) is a many valued function of the coordinates.
During each period the function increases by

∆S0 = 2πI (208)

We should remember that

S0(q, E, λ) =

∫
p(q, E, λ)dq

and

I =

∮
pdq

2π

32



During the same time the angle variable

∆ω = ∆

(
∂S0
∂I

)
=
∂∆S0
∂I

= 2π (209)

On the other hand if we expressed q and p or any one-valued function F (q, p) in terms of I and
W they would remain unchanged whenW increases by 2π (I constant). Any one function F (q, p)
when expressed in terms of I andW is a periodic function of in terms ofW with period 2π.

Non closed systems

Canonical variables can also be used for a system that it is not closed, in which the parameter
λ is time dependent.

As before

S0(q, E, λ) =

∫
p(q, E, λ)dq

I =

∮
pdq

2π

but this time we have λ = λ(t).
The generating function is now an explicit function of time. The new Hamiltonian H ′ is different
from the old one which was the energy E(I).
Let’s remember that if we transform from coordinates p, q → P,Q we have a generating function
F (q,Q)→ Φ(q, P ) and then,

pi =
∂Φ

∂qi
Qi =

∂Φ

∂Pi
H ′ = H +

∂Φ

∂t
(210)

Then we have S0 the generating function and

H ′ =E(I, λ) +
∂S0
∂t

=E(I, λ) +

(
∂S0
∂λ

)
q,t

∂λ

∂t

=E(I, λ) + Λλ̇ (211)

where Λ should be written expressly as Λ(I,W) after taking the time derivative.

Hamilton’s equations for closed systems are

İ = 0 Ẇ =
dE(I)

dI
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and then in our case

∂I

∂t
= −H

′

W
= − ∂Λ

∂W
∂λ

∂t
(212)

remember ∂Qi/∂t = ∂H ′/∂W and

∂5

∂t
= −∂H

′

∂I
=
dE

dI
+
∂Λ

∂I
λ̇ = ω(I, λ) +

(
∂Λ

∂I

)
Wλ

λ̇ (213)

ω( 6=W) =

(
∂E

∂I

)
λ

is the oscillation frequency calculated as if λ were constant.

Example

Write the EoM in canonical variables for a harmonic oscillator with Hamiltonian

H =
p2

2m
+

1

2
mω2(t)q2 (214)

q =

√
2E

mω2
sinω(t) =

√
2I

mω
sinω(t) (215)

p =
√

2Iωm cosω(t) (216)

And

S0 =

∫
pdq =

∫
p

(
∂q

∂W

)
t,ω

dω = 2I

∫
cos2 ωdω (217)

Λ =

(
∂S0
∂ω

)
q,I

=

(
∂S0
∂W

)
t

(
∂W
∂ω

)
q

=
I

2ω
sinW (218)

Then

İ = −I
(
ω̇

2ω

)
cos 2W (219)

Ẇ = ω +

(
ω̇

2ω

)
sin 2W (220)
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