
Classical Mechanics 2025
Lesson 7:

Mario C Dı́az

1 Rigid Bodies

In this chapter we will be dealing with extended rigid bodies. How do we define then a body that
is extended in volume and it is solid or rigid? We can think of a system of particles, a lot many of
them, which keep their distances among them constant.
Of course solid mechanics could be treated within the framework of continuous media. Think of
properties like elasticity, compressibility, and similar characteristics of extended bodies. But this
is not course of mechanic of continuous media. So we will limit ourselves to a basic formulation
where a treatment of a system of particles which retain their relative distances constant throughout
motion.

Also in order to describe the motion of a rigid body we will use two coordinate systems. A
”fixed” (inertial) system X,Y, Z and a second one attached to the body x1, x2, x3 (see Figure 8).

The other thing to do to develop the theory of rigid bodies is to go from a sum of the particles
to an integration: i.e. from

∑
m to ρdV , where ρ is the density and dV a differential of volume

for the element we are considering.

The x1, x2, x3 system is located at the center of mass of the rigid body we are studying. Figure
8) shows the relationship between the description of a point in the body from the two systems of
reference: ~R is the position vector of the center of mass of the body in the X,Y, Z inertial system
of reference. The orientation of the axes x1, x2, x3 respect to the x1, x2, x3 system is given by three
independent angles. These with the 3 components of ~R gives a total of six coordinates. A rigid
body is a mechanical system with six degrees of freedom.

We can now consider an arbitrary infinitesimal displacement of our rigid body under study. We
can describe it as a sum of two components:
1) A translation of the body as if it were a point like particle with its entire mass positioned at its
center of mass, and,
2) an infinitesimal rotation of the body itself around its center of mass.
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Figure 1: The systems of coordinates use to describe the motion of a rigid body

If ~r is the vector of any point P located in the rigid body from the co-moving system of ref-
erence, ~R the vector of the same point from the external system of reference X,Y, Z, then an
infinitesimal displacement d~R of P consists of a displacement d~R of the center of mass plus a
displacement d~φ×~r relative to the center of mass. This latter one is the result of a rotation through
an infinitesimal angle d~φ around and axis passing through the center of mass.

d~R = d~R+ d~φ× ~r (1)

If we take this equation and consider it in a differential of time dt we will have

d~R

dt
= ~v;

d~R

dt
= ~V ;

d~φ

dt
= ~Ω, (2)

and then

~v = ~V + ~Ω× ~r, (3)

~V is the velocity of the body center of mass and also the translational velocity of the body
itself. ~Ω is the angular velocity of the body. Its direction, that of d~φ is along the axis of rotation.

The velocity of any point of the rigid body can be expressed as a sum of its translational velocity
~V and its angular rotation.
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2 Uniqueness of Angular Velocity

Let’s assume that the {x1, x2, x3} coordinate system is not at the center of mass (see Figure 2).
The position of the origin is of this system, O′, is given by the vector ~a from O. Let’s call the
velocity of O′ ~V ′ and the angular velocity as measured from O′, ~Ω′.

Figure 2: The systems of coordinates {x1, x2, x3} away from the Center of Mass of the body.

Pick a point on the body P identified from respect to O′ by a vector ~r′ such that

~r = ~r′ + ~a (4)

so we get

~v =~V + ~Ω× ~r = ~V + ~Ω× (~r′ + ~a) =

=~V + ~Ω× ~r′ + ~Ω× ~a (5)

But at the same time we have in O′ that

~v =~V ′ + ~Ω′ × ~r′ (6)

But eq (5) is compatible with (6) only if

~V ′ = ~V + ~Ω× ~a, ~Ω′ = ~Ω (7)
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This is a very important result: at any instant the angular velocity of rotation of a system
of coordinates fixed to the body is independent of the particular system chosen. All rigid
bodies rotate with one unique angular velocity Ω which is the same regardless of the
coordinate system inside the body chosen to describe it. Any ~Ω′ calculated from a system
of coordinates not coincident with the center of mass of the body will be parallel and of the
same magnitude to the one calculated from the center of mass system.

If at any point it happens that ~V is perpendicular to ~Ω then any ~V ′ will also be perpendicular
to ~Ω′. From equation (3) ~v = ~V + ~Ω × ~r, we can see that the velocities ~v for all points in
the rigid body are perpendicular to ~Ω.

We can then choose a system with origin O′ such that ~V ′ is 0. In that case the motion of the
body at the instant considered is a pure rotation around an axis through O′. This is called
the instantaneous axis of rotation. In that case, of course, the origin of the moving rigid
body is at the center of mass of it.

3 The Inertia Tensor

We can calculate the kinetic energy of the extended body, considering it as a system composed of
a discrete number of particles:

T =
∑ 1

2
mv2 =

∑ 1

2
m
(
~V + ~Ω× ~r

)2
=
∑ 1

2
mV 2 +

∑ 1

2
m
(
~Ω× ~r

)2
+
∑

m~V · ~Ω× ~r (8)

With
∑
m = µ and taking into account that∑

m~V · ~Ω× ~r =
∑

m~r · ~V × ~Ω = ~V × ~Ω ·
∑

m~r = 0 (9)

where
∑
m~r = 0 because it is the radius vector of the center of mass and we have picked our

coordinate system centered there.

Also (
~Ω× ~r

)2
=
(
~Ω× ~r

)
·
(
~Ω× ~r

)
= |~Ω× ~r|2 = Ω2r2 sin2 θ (10)

where θ is the angle between ~Ω and ~r and of course we can write as sin2 θ = 1 − cos2 θ which
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when used in (10) gives

|~Ω× ~r|2 = Ω2r2 − Ω2r2 cos2 θ = Ω2r2 −
(
~Ω · ~r

)2
(11)

The kinetic energy then can be expressed

T =
1

2
µV 2 +

1

2

∑
m

(
Ω2r2 −

(
~Ω · ~r

)2)
(12)

where 1
2µV

2 is the translational kinetic energy. The second term is kinetic energy of only rotation
with angular velocity ~Ω about an axis passing through the center of mass of the body in question.
We can write this term in tensor form:

Trot =
1

2

∑
m
(
Ωi

2xi
2 − ΩixiΩkxk

)
=

1

2

∑
m
(
ΩiΩkδikx

2
l − ΩiΩkxixk

)
=ΩiΩk

∑
m
(
x2l δik − xixk

)
(13)

where Ωi = δikΩk and in 3 dimensions

δik =

 1 0 0
0 1 0
0 0 1

 (14)

Iik is called the inertia tensor:

Iik =
∑

m
(
x2l δik − xixk

)
(15)

Then, in general the kinetic energy of rigid body undergoing translation and rotation can be written
as

T =
1

2
µV 2 +

1

2
IikΩiΩk (16)

and the complete Lagrangian function is

L =
1

2
µV 2 +

1

2
IikΩiΩk − U (17)

and

Iik = Iki (18)

i.e. the inertia tensor is symmetric.

Iik =

 ∑
m(y2 + z2) −

∑
mxy −

∑
mxz

−
∑
myx

∑
m(x2 + z2) −

∑
myz

−
∑
mzx −

∑
mzy

∑
m(x2 + y2)

 (19)
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For a continuous body we can generalize the definition formula (15) to

Iik =

∫
ρ
(
x2l δik − xixk

)
dV (20)

where ρ is the density of body in question and the integral is performed over the entire volume
occupied by it.
The inertia tensor is a symmetric tensor of rank 2. It can be reduced to diagonal form by an appro-

Figure 3: A rigid 2-D rotator

priate choice of coordinates. When the tensor is diagonalized the axis will result aligned with the
principal directions determined by the new coordinate system. In that case the axis of symmetry of
the body in new system are called the principal moments of inertia, I1, I2, I3.

In a case like this

Trot =
1

2

(
I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3

)
(21)

None of these principal moments can exceed the sum of the other two. For example we can see
that

I1 + I2 =
∑

m
(
x21 + x23 + x22 + x23

)
>
∑

m
(
x21 + x22

)
= I3 (22)
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A body with I1 6= I2, I1 6= I3 and I2 6= I3 is called an asymmetrical top. If any two of the principal
moments of inertia are equal it is called a symmetrical top, and if all moments are equal it is called
a spherical top.

Examples

Example 1:

a) Using equation (20) write the inertia tensor for the 2- D rigid rotator pictured in Figure 3.
Notice that you will obtain a matrix with all the entries different from zero and in terms of cos and
sin of the angles involved.

b) align the rotator in such a way that it can rotate with its axis being any of the coordinate axes
(i.e. x, y or z) and show that the moment inertia around that axis is ml/12 where m is the mass of
the rotator and l is its length.

c) If

M =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (23)

and

N =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (24)

Then MNIN−1M−1 = I ′ where I is the rotational inertia obtain in a) using formula (2)) and
I ′ is a diagonal matrix.

I ′ =

 ml2/12 0 0
0 ml2/12 0
0 0 0

 (25)

In the case that the axis of rotation doesn’t pass through the center of mass we would have

~r = ~r′ + ~a (26)

equivalent to

xi = x′i + ai (27)
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So we get

I ′ik =
∑

m
(
x′l

2
δik − x′ix′k

)
(28)

which when we use (27) gives

I ′ik = Iik + µ
(
a2δik − aiak

)
(29)

Example 2

Determine the principal moments of inertia for the following molecules

a) A molecule made of collinear atoms.

Figure 4: a linear molecule of n atoms

I1 = I2 =
1

µ

∑
a6=b

mambl
2
ab (30)

and I3 = 0 where µ =
∑

ama. In the particular case of a diatomic molecule

I1 = I2 =
m1m2

m1 +m2
l2 = ml2 (31)

where m is the reduced mass.
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Figure 5: a triatomic molecule

Figure 6: a tetratomic molecule

b) a triatomic molecule forming an isosceles triangle (Fig 5) .

The center of mass is at x2 = m2h/µ, where µ = 2m1 + m2 the total mass of the molecule.
Then I1 = 2m1m2h

2/µ, I2 = (1/2)m1a
2 and I3 = I1 + I2.

c) a tetratomic molecule forming an isosceles triangle (Fig 6) .

The centre of mass is on the axis of symmetry of the tetrahedron at a distance x2 = m2h/µ
where h is the height of the tetrahedron.
I1 = I2 = 3m1m2h

2/µ+ 1
2m1a

2 and I3 = m1a
2.

If m1 = m2 then h =
√

2/3a and I1 = I2 =
3m2

1
4m1

2
3a

2 + 1
2m1a

2 = 1
2m1a

2 + 1
2m1a

2 = I3.
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4 Angular Momentum of a Rigid Body

The value of the angular momentum of a body depends on the point respect to which it is defined.
The most convenient one is the center of mass of the body. We will call it ~M . And when we use
it we will be considering the intrinsic angular momentum resulting from its motion relative to the
Center of Mass.

In ~M =
∑
m~r × ~v we will replace ~v = ~Ω× ~r to obtain

~M =
∑

m~r × ~Ω× ~r =
∑(

r2~Ω− ~r(~r · ~Ω)
)

which in tensorial notation is

Mi =
∑

m(x2l Ωi − xixk)

=Ωk

∑
m(x2l δik − xixk) (32)

which using the definition of the inertia tensor becomes

Mi = IikΩk (33)

And if Iik is in diagonal form

M1 = I1Ω1 M2 = I2Ω2 M3 = I3Ω3 (34)

For a spherical top

~M = I~Ω (35)

Conservation of angular momentum means that when we have a free rotation (no translation) it will
happen in a plane about an axis perpendicular to it. This is easy to visualize for a spherical body or
a rotator.
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Figure 7: a symmetrical top

5 The symmetrical top

In the case of a symmetrical top we will take advantage that the principal axes of inertia x1, x2 (the
axes perpendicular to x3, the axis of symmetry of the top) can be chosen arbitrarily.
We will take then the x2 axis perpendicular to the plane containing ~M and the axis x3.
Then M2 = 0 and Ω2 = 0. This implies that ~M and ~Ω are instantaneously on one plane. Which
itself implies that ~v = ~Ω× ~r for every point on the axis of the top is instantaneously perpendicular
to that plane.

The axis of the top rotates uniformly around the direction of ~M , describing a circular cone:
this phenomenon is called a regular precession of the top.

Of course, additionally the top rotates uniformly around its axis. The angular velocity of the
top is just

Ω3 =
M3

I3
=

(
M

I3

)
cos θ (36)

We can see that

Ωprec sin θ = Ω1 (37)

and due to the fact that

Ω1 =
M1

I1
=

(
M

I1

)
sin θ (38)
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we have

Ωprec =
M

I1
(39)

6 The equations of motion of a rigid body

A rigid body has 6 degrees of freedom, in general. So we have 6 equations of motion. The total
momentum of the body is

~P =
∑

~p = µ~V (40)

The total force acting on it is

~F =
∑

~f (41)

and

d~P

dt
= ~F (42)

with, in general

~F = −∂U
∂ ~R

(43)

where differentiation takes place with respect to the body’s center of mass.

When the body undergoes a translation δR there is an associated change in potential energy

δU =
∑ ∂U

∂~r
· δ~r = δ ~R ·

∑ ∂U

∂~r
= −δ ~R ·

∑
~f = −~F · δ ~R (44)

In the language of the Lagrangian formalism

d

dt

(
∂L

∂~V

)
=
∂L

∂ ~R
(45)

for the Lagrangian

L =
1

2
µ~V 2 +

1

2
IikΩiΩk − U (46)

and the Euler Lagrange equations are

∂L

∂~V
= µ~V = ~P ,

∂L

∂ ~R
= −∂U

∂ ~R
= ~F (47)
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To write the equation of motion for the momentum we choose a fixed inertial frame of reference so
that the center of mass is at rest in the instant considered.

d ~M

dt
=

d

dt

(∑
~r × ~p

)
=
∑

~̇r × ~p+
∑

~r × ~̇p (48)

Our choice of the frame of reference where ~V = 0 with ~V the velocity of translation of the center of
mass of the body, implies that at the same time ṙ = ~v, and since ~v and~p = m~v are clearly parallel,
~̇r × ~p = 0 and replacing ~p for the force

d ~M

dt
= ~K, ~K =

∑
~r × ~f (49)

~M has been defined as the angular momentum respect to the center of mass (intrinsic angular mo-
mentum). A such it will remain the same when calculated from another inertial reference frame by
Galilean Relativity. The vector ~r× ~f is called the momentum of the force and ~K is called the total
torque. It includes only the external forces.

if we move the origin such that the position vectors change from ~r to ~r′

~r′ = ~r − ~a (50)

then the torque

~K =
∑

~r × ~f =
∑

~r′ × ~f +
∑

~a× ~f (51)

and

~K = ~K ′ + ~a× ~F (52)

Equation (49) can also be appreciated as a Lagrange equation

d

dt

∂L

∂~Ω
=
∂L

∂~φ
(53)

for a rotational coordinate φi. And

∂L

∂Ωi
= IikΩk = Mi (54)

Then

δU = −
∑

~f · δ~r = −
∑

~f · δ~φ× ~r = −δ~φ ·
∑

~r × ~f = − ~K · δ~φ (55)
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from where we can easily see that

~K = −∂U
∂~φ

(56)

so that

∂L

∂~φ
= −∂U

∂~φ
= ~K (57)

If ~F and ~K are perpendicular we can always find ~a such that ~K ′ = 0 in the following equation

~K = ~K ′ + ~a (58)

The choice, of course, it is not unique. When ~K is perpendicular to ~F the effect of all the applied
forces can be reduced to that of a single force acting along this line.

Example: a uniform field of force in which the force on a particle is ~f = e ~E. Then ~F = ~E
∑
~e

and

~K =
∑

e~r × ~E. (59)

Assuming
∑
e 6= 0 we can define a radius vector ~r0 such

~r0 =

∑
e~r∑
e
. (60)

and then the torque is then simply

~K = ~r0 × ~F . (61)

in a uniform field, the effect of the field reduces to the action of a single force ~F applied at the
point whose radius vector is ~r0. The position of this field depends on the properties of the body
(i.e. density and geometry). In a gravitational field such point is called the center of mass.
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7 Euler angles

Figure 8: Euler angles

The six degrees of freedom of a body can be better described by the three coordinates labeling
the position of its center of mass and 3 angles which determine the orientation of the axes x1, x2
and x3 in the moving system of coordinates relative to the fixed system X,Y, Z. These angles are
called Euler angles.

The origins of our systems x1, x2, x3 and X,Y, Z coincide. The moving x1x2-plane intersects
the fixed XY -plane defining a line called the lines of nodes ON in Figure 8. This line is by con-
struction perpendicular to both the Z-axis and the x3-axis. We take the positive direction of this
line of nodes as that of the vector defined by ~z× ~x3 where these vectors are unit vectors along their
respective axes.

Then we take as the angle defining the position of the axes x1, x2, x3 relative to the X,Y, Z
the angle θ between the Z and x3 axes, the angle φ between the X-axis and the line ON and, the
angle ψ between the x1-axis and the line ON . The angles φ and ψ are measured around the Z and
x3 axes respectively in the direction given by the right hand rule. The angle θ takes values from 0
to π, and ψ from 0 to 2π.

We can now express the components of the angular velocity vector ~Ω along the moving axis
x1, x2, x3 in terms of the Eulerian angles and their derivatives.
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To do this we need to find the components along those axes of the angular velocities θ̇, φ̇, and
ψ̇:
i) ~̇ψ is in the direction of the x3-axis.
ii) ~̇φ is in the direction of the Z-axis.
iii) ~̇θ is in the direction of ~ON .

The components of these angular velocities along the x1, x2, x3-axes are
i)

θ̇1 = θ̇ cosψ
θ̇2 = θ̇ sinψ

ii)

φ̇3 = φ̇ cos θ
φ̇12 = φ̇ sin θ
with
φ̇1 = φ̇ sin θ sinψ and
φ̇2 = φ̇ sin θ cosψ

and ψ entirely along the x3-axis. This would give for ~Ω

Ω1 =φ̇ sin θ sinψ + θ̇ cosψ

Ω2 =φ̇ sin θ cosψ − θ̇ sinψ (62)

Ω3 =φ̇ cos θ + ψ̇

If we calculate the principal moments of inertia of the body along the x1, x2, x3-axes we will get
for the rotational energy in the already obtained formula (21) copied below

Trot =
1

2

(
I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3

)
. (21)

that in the case of a symmetrical top where I1 = I2 6= I3

Trot =
1

2
I1

(
~̇
φ2 sin2 θ + θ̇2

)
+

1

2
I3

(
φ̇ cos θ + ψ̇

)2
(63)

This can be further simplified for a symmetrical top using that {x1, x2} are arbitrary. We can take
x1 along the line of nodes ON . Then ψ = 0 and we obtain

Ω1 = θ̇, Ω2 = φ̇ sin θ, Ω3 = φ̇ cos θ + ψ̇ (64)
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Let’s determine the free motion of a symmetric top. We take the Z-axis in the direction of ~M , x3
along the direction of symmetry of the top. x1 by construction is on the line of nodes ON .
Then

M1 =I1Ω1 = I1θ̇

M2 =I2Ω2 = I1φ̇ sin θ (65)

M3 =I3Ω3 = I3(φ̇ cos θ + ψ̇)

Since x1 is perpendicular to Z θ = 0 and θ̇ = 0 we get

M1 =0,

M2 =M sin θ (66)

M3 = cos θ,

and

θ̇ = 0, I1φ̇ = M, I3(φ̇ cos θ + ψ̇) = M cos θ (67)

where θ, the angle between the axis of the top and the direction of ~M is constant.
The velocity of precession is given by second equation in (67)

φ̇ =
M

I1
(68)

and the angular velocity with which the top rotates around its axis is

Ω3 =
M

I3
cos θ (69)

8 Euler’s equations

The equations of motion in section 6 are obtained from a fixed system of coordinates.
d~P
dt and d ~M

dt are calculated respect to it.
But what we just saw is that the simplest relations between the components of the rotational angular
momentum of a rigid body ~M and the components of the angular velocity can be obtained take the
simplest form in the moving coordinate system of axis x1, x2, x3 attached to center of mass of the
body.

Let’s look for the equations transforming the equations of motion to coordinates x1, x2, x3.
The time derivative of a vector ~A respect to the fixed system of coordinates (assuming it is not
changing in the moving system) is d ~A/dt = ~Ω× ~A. i.e. ~A changes only due to the rotation of the
body. But in general would be

d ~A

dt
=
d′ ~A

dt
+ ~Ω× ~A (70)
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where d′/dt measure the rate of change respect to the moving system. using this we can write (43)
and (49)

d′ ~P

dt
+ ~Ω× ~P = ~F

d′ ~M

dt
+ ~Ω× ~M = ~K (71)

We are taking the components of the equation above respect to the moving system x1, x2, x3 like(
d′ ~P
dt

)
1

= dP1
dt etc... So replacing ~P by µ~V we get

µ

(
dV1
dt

+ Ω2V3 − Ω3V2

)
= F1,

µ

(
dV2
dt

+ Ω3V1 − Ω1V3

)
= F2 (72)

µ

(
dV3
dt

+ Ω1V2 − Ω2V1

)
= F3

If the axes x1, x2, x3 are the principal axes of inertia we can put M1 = I1Ω1 and get

I1
dΩ1

dt
+ (I3 − I2)Ω2Ω3 = K1,

I2
dΩ2

dt
+ (I1 − I3)Ω3Ω1 = K2 (73)

I3
dΩ3

dt
+ (I2 − I1)Ω1Ω2 = K3

In a free rotation ~K = 0.

Example

For a symmetrical top, I1 = I2 and from the third equation in (73) we get Ω3 is a constant. The
first two equations then can be written

Ω̇1 =− ωΩ2 (74)

Ω̇2 = ωΩ1 (75)

where

ω =
Ω3(I3 − I1)

I1
(76)

Multiplying (75) by i we can group both (74) and (75) as follows

d (Ω1 + iΩ2)

dt
= iω (Ω1 + iΩ2) (77)
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differential equation which has as a solution

Ω1 + iΩ2 = A exp(iωt). (78)

which gives the real values

Ω1 = A cos(ωt), (79)

Ω2 = A sin(ωt). (80)

with A a real number. this shows that the component of the angular velocity perpendicular to the
axis of the top (x3) rotates with angular velocity ω with constant magnitude A2 = Ω2

1 + Ω2
2 where

Ω2
1 = A2 cos2(ωt), (81)

Ω2
2 = A2 sin2(ωt). (82)

Since Ω3 is also constant ~Ω rotates uniformly with constant velocity ω around the axis x3. ~M has
a particular relationship with ~Ω given by M1 = I1Ω1, M2 = I2Ω2 and M3 = I3Ω3 so the angular
momentum ~M executes a motion similar to the axis of the top. In terms of the Eulerian angles the
angular velocity of ~M about the x3 axis is the same as−ψ̇. From equation (67) in the section Euler
angles

θ̇ = 0, I1φ̇ = M, I3(φ̇ cos θ + ψ̇) = M cos θ (67)

we get

ψ̇ =
M cos θ

I3
− φ̇ cos θ = M cos θ

(
1

I3
− 1

I1

)
. (83)

or using (69)

−ψ̇ =
Ω3(I3 − I1)

I1
(84)
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