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Putting the integrals of motion to work
The most general Lagrangian of a 1-dimensional system can be written

L =
1

2
a(q)q̇2 − U(q) (1)

where a(q) is a function of the coordinates: think as an example of

a(r, θ, φ) = m(ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ)

where qi are r, θ, φ. Of course in this case the Lagrangian in 3-D would be

L =
1

2

3∑
i=1

ai(qi)q̇i
2 − U(qi) (2)

Of course in cartesian system in 1-D we have

L =
1

2
mẋ2 − U(x) (3)

The conservation theorems provide a very useful framework for integrating
a system as (3). From the theorem of conservation of energy we know:

1

2
m

(
dx

dt

)2

+ U(x) = E (4)

If the energy E is constant we can write

1

2
m

(
dx

dt

)2

= E − U(x) (5)

From where we obtain √
1

2
m

dx√
E − U(x)

= dt (6)
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Figure 1: A generic potential curve with one particular value of the energy
which remains constant

which we can solve:

t =

√
1

2
m

∫
dx√

E − U(x)
+ constant (7)

Since the kinetic energy is always positive the total energy is always greater
than the potential energy. Let’s take a look at Fig 1: At U = E the kinetic
energy is 0.
If the particle starts at a value of x such x < x1 the particle is bound to
move between 0 and x1. It can not move between x1 and x2 or x3 and
x4 because it would imply a negative kinetic energy. Those values of the
potential present a potential barrier for the system. If the particle starts
with a value x2 < x < x3 the motion will be finite, bound and oscillatory
between x2 and x3. For a value of x > x4 the motion will be unbound and
the particle will escape to infinity with velocity v =

√
2E/m.
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Figure 2: A pendulum of mass m and length l

In the case of oscillatory motion we can calculate the period. Using time
reversibility (time symmetry) the period will be twice the time from x1 to
x2:

T (E) =
√

2m

∫ x3(E)

x2(E)

dx√
E − U(x)

(8)

Notice that x2 and x23 are the roots of E − U(x) = 0. We would of course
need to know the value of E.

Example

Find the period of oscillations of a simple pendulum of length l and
mass m in a gravitational field (See Fig 2).

E =
1

2
ml2φ̇2 −mgl cosφ (9)

At the maximum angle φ0 φ̇ = 0, which corresponds E = U , so

E = −mgl cosφ0 (10)
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Notice that this is a constant value. We calculate now the time required to
go from φ = 0 to φ = φ0. The period will be 4 times this value. So

T = 4

√
l

2g

∫ φ0

0

dφ√
cosφ− cosφ0

(11)

Using that cosφ = 1− 2 sin2 φ
2

T = 2

√
l

g

∫ φ0

0

dφ√
sin2(φ0/2)− sin2(φ/2)

(12)

If we define sin ξ = sin(φ/2)
sin(φ0/2)

we get

T = 4

√
l

g
K(sin(φ0/2))) (13)

where

K(k) =

∫ π/2

0

dξ√
1− k2 sin2(ξ)

(14)

With K(k) an elliptic integral of the first kind. For small oscillations we
have sin 1

2φ0 '
1
2φ0 � 1 and the expansion of K gives

T = 2π

√
l

g

(
1 +

1

16
φ0

2 + · · ·
)

(15)

which to first order gives

T = 2π

√
l

g
(16)
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The reduced mass
In classical mechanics the so called 2 body problem (two particles inter-
acting through a potential energy like the motion of the planets under the
attraction of the Sun) can be solved exactly.
This is not true in the theory of general relativity. There is no closed exact
solution of the Einstein’s equations for the 2 body problem.

But the solution of it within the framework of classical mechanics is the
most splendid accomplishment of modernity.

Within the framework of the Lagrangian formalism the solution is ex-
tremely elegant and mathematically simple.

The first step consist in breaking down the motion of the system into the
motion of the center of mass and the motion of the two bodies around it.
The potential energy of the interaction of the two bodies depends only on
the distance between them, i.e. on |~r1− ~r2|, which we can call it ~r = ~r1− ~r2.
The Lagrangian of the system is:

L =
1

2
m1~̇r1

2
+

1

2
m2~̇r2

2 − U(|~r1 − ~r2|) (17)

And now we can put the origin of our coordinate system at the center of
mass of the mechanical system. Then

m1~r1 +m2~r2 = 0 (18)

which with the definition

~r ≡ ~r1 − ~r2 (19)

gives

~r1 =
m2~r

m1 +m2
~r2 =

−m1~r

m1 +m2
(20)
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Also notice that

1

2
m1~̇r1

2
+

1

2
m2~̇r2

2
=

1

2

m1m2
2~̇r

2

(m1 +m2)2
+

1

2

m1
2m2~̇r

2

(m1 +m2)2

=
1

2
m~̇r 2 (21)

where

m =
m1m2

m1 +m2
(22)

is called the reduced mass of the system. With this definition the La-
grangian becomes

L =
1

2
m~̇r 2 − U(r) (23)

This is the Lagrangian of one particle moving in an external field U(r)
symmetric about the origin (it does not depend on a particular direction).

Once we solve the equations of motion for this ~r using (20) we can find
~r1 = ~r1(t) and ~r2 = ~r2(t).

Motion in a central field
U(r) in (23) is called a central field. The force acting on the particle is

~F = −∂U
∂r

= −dU
dr

~r

r

As we saw in the previous Lesson notes in the chapter on Angular Momen-
tum, the angular momentum of a system relative to the center of the system
is conserved

~M = ~r × ~p
Since ~M is always perpendicular to the radius, this shows that the motion
takes place on a plane perpendicular to ~M .
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Figure 3: a segment of the path

The path of a particle in a central field lies in one plane.

In polar coordinates the Lagrangian is

L =
1

2
m
(
ṙ2 + r2φ2

)
− U(r) (24)

This Lagrangian does not involve φ explicitly, so

d

dt

(
∂L

∂φ̇

)
=
∂L

∂φ
(25)

which means
∂L

∂φ̇
= mr2φ̇ = pφ = M = Mz = constant (26)

We can see that 1
2rrdφ is the area of the sector bounded by two adjacent

radius vectors and a segment of the path followed by the body (see Fig 3).
A differential of the area df = 1

2r
2dφ divided by a differential of time dt

will give us the change of area along the path with time). But precisely with
this definition of df

M = 2m
df

dt
= 2mḟ (27)
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where ḟ is called the sectorial velocity, we can see that it is constant, and
its constancy implies that the radius vector sweeps equal areas in equal in-
tervals of time (Kepler’s second law).

We can construct the solution now using the conservation laws of en-
ergy and momentum. We will use the fact that E and M are constants of
motion.

E =
1

2
m(ṙ2 + r2φ̇2) + U(r) =

1

2
mṙ2 +

1

2

M 2

mr2
+ U(r) (28)

From here solving for ṙ we get

ṙ ≡ dr

dt
=

√
2

m
(E − U(r))− M 2

m2r2
(29)

and solving for t

t =

∫
dt =

∫
dr√

2
m (E − U(r))− M2

m2r2

+ constant (30)

And solving for dt inM = mr2 ˙phi = mr2dφ/dtwe can get the differential
equation for the trajectory

φ =

∫
dφ =

∫
dt =

∫
M/r2dr√

2
m (E − U(r))− M2

m2r2

+ constant (31)

Equations (30) and (31) are the solution to our problem. (30) gives the po-
sition (or distance) of our particle. (31) gives r(φ), namely the path.

Formula (28), is quite important. It shows that the radial component of
the motion can be treated as taking place in 1-dimension with an “effective”
potential energy

Ueff = U(r) +
M 2

2mr2
(32)
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M2

2mr2 is called the centrifugal energy.

The values of r for which

Ueff = U(r) +
M 2

2mr2
= E (33)

determine the maximum and minimum effective distance from the center
of the field.

Clearly (33) is satisfied only when ṙ = 0, which is not a stopping point
point but a turning one. Before or after this point r(t) increases or de-
creases.
If the values of r allowed are such that r > rmin the motion is infinite. The
particle comes from and returns to infinity.

If If the values of r allowed are such that rmin < r < rmax movement
is finite and the path lies between an annulus bounded by rmin and rmax,
which does not necessarily implies a closed curve.

We can see that between rmin and rmax,

∆φ = 2

∫ rmax

rmin

Mdr/r2√
2m (E − U(r))−M 2/r2

(34)

For a closed path ∆φ = 2mn π with m and n both integers. After n periods
the radius vector will complete m revolutions coming back to the original
position.
These cases are exceptional. In general ∆φ will not be a rational fraction
of 2π. There are only two types of U(r) for which the motion takes place
on a closed path.
These are

U(r) =
1

r
or U(r) =

1

r2
(35)
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Figure 4: the path under a central field oscillating between a minimum and
a maximum radius.

The first is the Kepler’s potential. The second one is the space oscillator.

Can the particle reach the center of the field?

When M 6= 0 we have the centrifugal energy 1/r2 →∞ as r → 0. So
in general it is impossible.
It could only happen if U(r)→ −∞ as r → 0.

We have from

1

2
mṙ2 = E − U(r)− M 2

2mr2
> 0 (36)

from where we can infer then that

r2U(r) +
M 2

2mr2
< Er2 (37)
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Figure 5: the path for a spherical oscillator.

and consequently r → 0 if,

[r2U(r)]r→0 < −
M 2

2m
(38)

which means that U(r) needs to go to −∞ as − α
r2 with α > M2

2m or propor-
tionally to − 1

rn with n > 2.

Example

Integrate the equations of motion for a spherical pendulum (a particle
of mass m moving on the surface of a sphere of radius l in a gravitational
field).

Solution
The Lagrangian is

L =
1

2
ml2(θ̇2 + φ̇2 sinθ) +mgl cos θ (39)
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We can see that φ is cyclic. So pφ is conserved,

Mz = ml2φ sin2 θ = constant (40)

The energy is

E =
1

2
ml2(θ̇2 + φ̇2 sinθ)−mgl cos θ

=
1

2
ml2θ̇2 +

1

2

Mz
2

ml2
sin2 θ −mgl cos θ (41)

Solving for t in a manner similar to what we did with equation (3)

t =

∫
dθ√

2[E − Ueff(θ)/ml2]
(42)

where Ueff = 1
2

(
Mz

2/ml2
)

sin2 θ −mgl cos θ.

Solving for φ

φ =
Mz

l
√

2m

∫
dθ

sin2 θ
√
E − Ueff

(43)

the solution in both cases are elliptic integrals.

Kepler’s Potential
One of the most important field types in physics is

U(r) ∝ 1

r
(44)

where the associated force goes like 1/r2. The Kepler’s potential energy
is of this form as well as the Coulomb’s potential in electrostatics. In this
latter case the potential could be such that the force between particles is
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Figure 6: The Kepler effective potential energy

repulsive or attractive depending on the nature of the charge of the particles
(charges of equal types repulse each other and opposite charges attract each
other). Mass is always positive and the resultant force is attractive only.

The potential we will investigate has the form:

U(r) = −α
r

(45)

The associated effective potential energy is:

Ueff(r) = −α
r

+
M 2

2mr2
(46)

We can see that when r → 0, Ueff →∞ and when r →∞, Ueff → 0
from negative values of Ueff . The minimum of Ueff occurs when

dUeff
dr

=
α

r2
− M 2

mr3
= 0 (47)
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which shows that it occurs when

r =
M 2

mα
(48)

and the the effective potential at this value of r is

Ueff = −mα
2

2M 2
(49)

We can now use equation (31) where we integrate the trajectory for the
angle as function of r. In that equation we substitute the generic U(r) for
U(r) = −α

r We then have∫
dφ =

∫
Mdr/r2√

2mE − αm
r −

M2

r2

(50)

from where we have

φ =
M√
2m

∫
dr/r√

Er2 − αr − M2

2m

(51)

We have deliberately reorder the integral to leave the terms inside the square
root in the denominator as a polynomial function of r. The integral is now
of the form ∫

dx/x√
A+Bx+ Cx2

(52)

which has a solution of the form:∫
dx/x√

A+Bx+ Cx2
= ± 1√

−A
sin−1

(
Bx+ 2A

x
√
B2 − 4AC

)
(53)

We can apply this result in (51) with the following identification:

A = −M
2

2m
, B = −α, C = E
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Then the integral becomes

φ− φ0 = ± sin−1

(
−αr −M 2/m

r
√
α2 + 2EM2/m

)
(54)

The resulting integral can be simplified further in this manner

φ− φ0 = ± sin−1

(
−1 +M 2/αmr√
1 + 2EM2/mα

)
(55)

Defining

p =
M 2

mα
, e =

√
1 +

2EM2

mα
(56)

we get

sinφ =
−1 + p/r

e
(57)

or
p

r
= 1 + e sinφ (58)

And finally we can choose the constant φ0 in (55) so that

p

r
= 1 + e cosφ (59)

This would give φ such that the smallest value of r occurs at φ = 0. This
point nearest to the origin is called the perihelion (in the case of an object
other than the sun -helios in Greek- it is called periastron). 2p is called the
latus rectum of the orbit and e the eccentricity.

For the obtention of the different formulae involving the major and mi-
nor axis and other geometrical parameters of an ellipse see, i.e. 1. The latus

1https://www.mathopenref.com/ellipseaxes.html
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Figure 7: An elliptical orbit and its physical parameters

rectum is given by

p =
M 2

mα
(60)

and the eccentricity is

e =

√
1 +

2EM2

mα2
(61)

Let’s remember that we have made the motion of two bodies bound by a
gravity potential equivalent to the motion of one body in a central field. The
path of the motion follows a conic. These curves are called conics because
they can be described as the result of the intersection of plane with a double
cone joined through their vertices. See figure 8. Notice the following:
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Figure 8: The conics

• If the energy has the value:

E = −mα
2

2M 2
(62)

e = 0 and the orbit is circular.

• If the energy has the value:

−1 < −mα
2

2M 2
< 0 (63)

the eccentricity is 0 < e < 1 the orbit is an ellipse.

• If the energy is E = 0 the trajectory is a parabola with eccentricity
e = 1.
And finally,

• If the energy is E > 0 the trajectory is a hyperbola with e > 1.
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The relationship of the conic parameters to the energy and angular momen-
tum of the involved bodies are:

a =
p

1− e2
=

α

2|E|
b =

p√
1− e2

= M
√

2m|E| (64)

Notice that for bound orbits (like the elliptical and circular ones) the total
energy has to be negative or at most 0, i.e. in this last limiting case the
kinetic energy is equal to the potential energy, which is always negative.
We can also observe that equation (62) is precisely equation (49), i.e. the
value of the Ueff at the minimum of the potential where motion takes place
at fixed value r as it is expected to be a circular orbit. the radius at which
the minimum of the potential occurs is

r =
M 2

mα
(65)

which we obtained as equation (48) when looking for the minimum of the
effective potential. If the kinetic energy exceeds the potential energy the
particle would escape the field attraction.

Also we can see that the major axis of the ellipse depends on the energy
of the particle and not on its angular momentum.

The least and longest distances from the center of the field are

rmin =
p

1 + e
= a(1− e) (66)

rmax =
p

1− e
= a(1 + e) (67)

These values can be obtained as the roots of

Ueff(r) = −α
r

+
M 2

2mr2
= E (68)
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Using the law of conservation of momentum, i.e. that M in M = 2mdf/dt
is a constant, we have ∫

Mdt =

∫
2mdf (69)

Integrating from 0 to 2π the integral over time is the period of motion

MT =

∫
2mdf = 2mf = 2πmab (70)

where the are of the ellipse is f = 2πab. From equation (64) we have

ab =
p

1− e2
p√

1− e2
=

α

2|E|
M√

2m|E|
(71)

From where we can obtain using (70)

T =
πα√

1
2m |E|3/2

(72)

We observe that the period only depends on the energy of the particle. As
we already noticed before for E > 0 motion is infinite, i.e. unbound. In
that case the path is a hyperbola with origin at the internal focus: see Figure
9.

The distance to the perihelion is

rmin =
p

e+ 1
= a(e− 1) (73)

where

a =
p

e2 − 1
=

α

2E
(74)

is the axis of the hyperbola.

If instead E = 0 we have e = 1 and the trajectory is a parabola: see
Figure 10. In this case the perihelion is

rmin =
1

2
p (75)
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Figure 9: A hyperbolic trajectory
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Figure 10: A parabolic trajectory
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Finding the coordinates of motion
We need to use equation (30)

t =

∫
dt =

∫
dr√

2
m (E − U(r))− M2

m2r2

+ constant

where we will use the Kepler potential getting

t =

√
m

2|E|

∫
rdr√

−r2 + α
|E|r −

M2

2m|E|

=

√
ma

α

∫
rdr√

a2e2 − (r − a)2

(76)

where e and a are given by equations (61) and (64). Substituting

r − a = −ae cos ξ (77)

and then

T =

√
ma3

α

∫
(1− e cos ξ)dξ =

√
ma3

α
(ξ − e sin ξ) + constant (78)

We can take the origin of time so that the constant is 0.

r = a(1− e cos ξ), t =

√
ma3

α
(ξ − e sin ξ) (79)

When t = 0 the particle is at the perihelion.
In cartesian coordinates

ex = p− r = a(1− e2)− a(1− e cos ξ) = ae(cos ξ − e) (80)

Using that y =
√
r2 − x2 we get

x = a(cos ξ − e) y = a
√

1− e2 sin ξ (81)
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and ξ sweeps from 0 to 2π completing the ellipse.
In the case of hyperbolic orbits,

r = a(cos ξ − 1) t =

√
ma3

α
(e sinh ξ − ξ) (82)

x = a(e− cosh ξ) y = a
√
e2 − 1 sinh ξ (83)

where −∞ < ξ <∞.

A repulsive field
Let’s examine the repulsive field

U =
α

r
α > 0 (84)

The effective potential energy will be of the form

Ueff =
α

r
+

M 2

2mr2
(85)

As r goes from 0 to∞ Ueff decreases. The energy of the particle is always
positive and motion is then∞. See Figure 11. The path is a hyperbola

p

r
− 1 + e cosφ (86)

where p and e are defined as before.
The perihelion is

rmin =
p

e− 1
= a(e+ 1) (87)

The time dependence is given

r = a(e cosh ξ + 1) (88)

t =
√
ma3α(e sinh ξ + ξ) (89)

x = a(cosh ξ + e) (90)

y = a
√
e2 − 1 sinh ξ (91)
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Figure 11: A repulsive central field
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One particular integral of motion for these fields
When the field is U = α/r regardless of a positive or negative α, there is
one particular integral of motion.
This quantity is

~v × ~M + α
~r

r
(92)

and it remains constant throughout motion. Let’s calculate the total deriva-
tive of it respect to time:

~̇v × ~M + α
~v

r
− α(~v · ~r) ~r

r3
(93)

Since M = m~r × ~v we have

m~r(~v · ~̇v)−m~v(~r · ~̇v) + α
~v

r
− α r

r3
(~v · ~r) (94)

Using that m~̇v = α ~r
r3 we obtain

d

dt
(~v × ~M + α

~r

r
) = 0 (95)

The direction is along the major axis from the focus to the perihelion and
its magnitude is αe.

25


