
Classical Mechanics 2023
Lesson 2: Conservation Laws

Mario C Dı́az



The generalized coordinates qi and velocities q̇i clearly change during
the motion experienced by a mechanical system. There are nonetheless cer-
tain functions of these quantities that could, under certain circumstances,
remain unchanged depending only on the initial conditions of the problem.
Such functions are called the integrals of motion. There are 2n − 1 inte-
grals of motion for a system with n degrees of freedom.

Let’s recap the above statement:
A more proper way of framing it is the following. Think that the uti-
lization of the generalized coordinates and generalized velocities, let
us study the motion of a mechanical system in a 2n dimensional space
defined precisely by them: this is called a phase space. A constant of
motion is a function

C(qi(t1), q̇i(t1), t1) = C(qi(t2), q̇i(t2), t2)

On the other hand an integral of motion is a function I(qi, q̇i) which
remains constant along any trajectory:

I(qi(t1), q̇i(t1)) = I(qi(t2), q̇i(t2))

Notice that I(qi, q̇i) it is not a function of time! But integrals of motion
are constants of motion. The reciprocal is not true: there are constants
of motion that are not integrals of motion, i.e.:

C(q, q̇, t) = q − q̇t

is a constant of motion but not an integral of motion (it is dependent
on t!).

These examples show that using the fact that the integrals of motion
do not depend on time, the 2n constants of motion can be solved for as
function of the generalized coordinates and an arbitrary time. This arbi-
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trariness in the choice of time effectively constrains the 2n constants in one
(the arbitrary constant time). The general solution of the equations of mo-
tion has 2n arbitrary constants. Our variables are qi and q̇i but not the time
explicitly. This makes the choice of the origin of time completely arbitrary.
Furthermore we can add an additive constant t0 to the time and express the
2n functions qi and q̇i as functions of the arbitrary constants, i.e. we can
have qi = qi(t+ t0, C1, C2, ..., C2n−1) and q̇i = q̇i(t+ t0, C1, C2, ..., C2n−1)
expressing our generalized coordinates and velocities functions as a func-
tion of the 2n− 1 arbitrary constants.

There are certain integrals of motion that have a distinct relevance though.
These are related to symmetries present in the physical system under con-
sideration.

Energy
Homogeneity of time
Homogeneity of time only means that the results of a physical experiment
(or effect) do not depend on any time in particular. If I drop a stone from a
cliff today, the result will not change by dropping the same stone from the
same cliff in a few days from today (assuming all other conditions equal).

This is expressed by the fact that the Lagrangian of a closed physi-
cal system does not depend explicitly of time. So let’s calculate the total
derivative of the Lagrangian respect to time and make it equal to zero. First
the total derivative of L is:

dL

dt
=
∑
i

∂L

∂qi
q̇i +

∑
i

∂L

∂q̇i
q̈i (1)
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Using E-L equations we have that ∂L
∂qi

= d
dt
∂L
∂q̇i

and then replacing in (1)

dL

dt
=
∑
i

q̇i
d

dt

∂L

∂q̇i
+
∑
i

∂L

∂q̇i
q̈i

=
∑
i

d

dt

(
q̇i
∂L

∂q̇i

)
And we can enclosed both sides of the equation in one total derivative re-
spect to time

d

dt

(∑
i

q̇i
∂L

∂q̇i
− L

)
= 0 (2)

We will call the quantity within the parenthesis, which remains constant in
time during the motion of a closed system, the Energy of the mechanical
system.

E =
∑
i

q̇i
∂L

∂q̇i
− L (3)

We can notice that E is linear in L and consequently it is additive like the
Lagrangian for a system of particles which are not interacting. We notice
that this quantity remains constant even in the presence of a constant field
if it does not change with time. Mechanical systems where the energy is
conserved are called conservative systems.

One more thing to notice. The shape of (3) is such that if we write the
Lagrangian as L = T (q, q̇) − U(q) where the function T is a quadratic
function of the velocities, we obtain∑

i

q̇i
∂L

∂q̇i
=
∑
i

q̇i
∂T

∂q̇i
= 2T (4)
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where the last equation is a result of Euler’s theorem for homogeneous
functions (T is a homogeneous function of degree 2 of q̇).

Homogeneous functions

Homogeneous real-valued function: of two variables x and y is a
real-valued function that satisfies the condition f(rx, ry) = rkf(x, y)
for some constant k and all real numbers r. The constant k is called
the degree of homogeneity.

Euler’s homogeneous function theorem
Suppose that the function f : Rn\{0} → R is continuously differen-
tiable. Then f is positively homogeneous of degree k if and only if
x · ∇f(x) = kf(x). a

Example
f(x, y) = 3x+ y

f(βx, βy) = 3βx+ βy = β(3x+ y) (5)
= β1(3x+ y) = β1f(x, y)

afor a proof see https://en.wikipedia.org/wiki/Homogeneous function#Euler’s theorem

Substituting in (3) we get

E = T (q, q̇) + U(q); (6)

In cartesian coordinates for a system on n masses,

E =
∑
i

1

2
mivi

2 + U(~r1, ~r2, ..., ~rn) (7)

Where i goes from 1 to n, and the potential depends only on the position
of the masses. The total energy of a mechanical system is the sum of the
kinetic energy T and the potential energy U .
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Momentum
Let’s consider now the homogeneity. What does this mean? If we think
about a closed mechanical system we always model it as a system in some
sort of ideal vacuum space. We neglect air or any medium. This imaginary
model ”vacuum” it’s in some sense of constant density. We don’t think that
this hypothetical medium changes as we move through it in any direction.
This is what we mean by a homogeneous space. If we perform a displace-
ment in any direction, the mechanical state of the system, where each parti-
cle making our system is moved similarly in the same direction, should not
change. The Lagrangian is changing only due to these displacement of the
system, so

δL =
∑
i

∂L

∂~ri
· δ~ri = 0 (8)

due to the fact that δ~ri is arbitrary we get∑
i

∂L

∂~ri
= 0 (9)

We can use E-L equations (Lesson 1)

d

dt

(∑
i

∂L

∂~vi

)
−
∑
i

∂L

∂~ri
= 0 (10)

where ~vi = ~̇
ir from where we clearly obtain that

d

dt

(∑
i

∂L

∂~vi

)
=
∑
i

∂L

∂~ri
= 0 (11)

This means that in a closed mechanical system, the vector

~P ≡
∑
i

∂L

∂~vi
= constant (12)
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~P remains constant throughout motion and it is called the momentum of
the system. The Lagrangian for a system of particles is

L =
n∑
i=1

1

2
mivi

2 − U(~r1, ~r2, ..., ~rn) (13)

So for a system of particles

~P =
∑
i

∂L

∂~vi
=
∑
i

mi~vi =
∑
i

~pi (14)

Expressing the additivity of the momenta of a system particles. This is true
wether their exists interaction between them or not. All three components
of momentum will be conserved only if there is no external field. In the
presence of one some components may be conserved if the potential energy
does not depend on the corresponding coordinates.
Example:
If ∂U

∂x1
= 0 then Px =

∑
imivix remains constant throughout the motion of

the system. In other words displacement in the xi direction does not change
the momentum of the system. Or vice versa and using cartesian coordinates
if the field is uniform in the x direction then the momentum of the system
remains unchanged in the y and z direction. Also we note that

∂L

∂~ri
= −∂U

∂~ri
(15)

is the force ~Fi acting on the i particle and this implies from eq (8) that the
sum of all forces acting on all the particles in the system is∑

i

~Fi = 0 (16)

We can see that if the system is made out of just two particles

~F1 + ~F2 = 0 (17)
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from where ~F1 = −~F2 which means that the force exerted by particle 1
on particle 2 is equal in magnitude and opposite in direction to the force
exerted by 2 on 1 (Newton’s third law, action and reaction).

Generalized Coordinates

When using generalized coordinates qi, we have that the derivatives of
the Lagrangian, with respect to the generalized velocities

pi =
∂L

∂q̇i
(18)

are called the generalized momenta. And the Lagrangian derivative re-
spect to the generalized coordinates

Fi =
∂L

∂qi
(19)

are called generalized momenta. Notice then that with this notation the E-L
equations are

ṗi = Fi (20)

In Cartesian coordinates the generalized momenta are the components of
the vectors ~pi but in generalized coordinates the generalized momenta will
not necessarily be the products of mass and velocities.

Center of mass
Obviously the momentum of a system depends on which frame it is calcu-
lated. In non-relativistic cases if a frame O moves with velocity ~V respect
to another system O′ the velocities of each particle (from the system of par-
ticles under consideration) in each frame being ~vi and ~v′i respectively, are
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related by

~vi = ~v′i + ~V (21)

The momenta are then

~P =
∑
i

mi~vi =
∑
i

mi~v
′
i +
∑
i

mi
~V =

∑
i

mi~v
′
i + ~V

∑
i

mi (22)

or

~P = ~P ′ + ~V
∑
i

mi (23)

As we discussed before let’s be O′ the references frame where our system
has momentum ~P ′ = 0. From it

~P = ~V
∑
i

mi (24)

it follows

~V =
~P∑
imi

=

∑
imi~vi∑
imi

(25)

When the total momentum of a system in a given frame is 0 it is said to be
at rest in such frame in analogy with a particle at rest in a frame co-moving
with the particle.

Additionally we see that the momentum of the system of particles in the
frame where it is at rest can be written as (23) where

∑
imi is the sum of

the total particles and can be treated as the mass of the system. This shows
the additivity of mass.

Additionally (23) can be seen as

~V =

∑
imi~vi∑
imi

=

∑
imi

d~ri
dt∑

imi
(26)
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We can now define a vector ~R such that d~Rdt = ~V which will then be

~R =

∑
imi~ri∑
imi

(27)

This position vector is called the center of mass. Notice that the system then
moves with a velocity ~V that it is the time derivative of a very particular
point in the system, its center of mass.

It is clear then, that if the linear momentum of the system is conserved
the center of mass moves in a straight line with constant velocity. This is
the generalization of the principle of inertia. All the particles in the system
could be moving in different directions but the system as a whole moves in
such a way that the center of mass remains moving with constant velocity
like a single particle in the absence of an external potential (force).

Internal energy

The total energy of a system of particles in a given frame O

E =
1

2

∑
i

mivi
2 + U (28)

On a different systemO′moving with velocity ~V respect toO using Galilean
transformations of the velocities

E =
1

2

∑
i

mi(~v
′
i + ~V )2 + U (29)

=
1

2

∑
i

miV
2 +

1

2

∑
i

mi
~v′
2

i +
∑
i

mi~v
′
i · ~V + U

= E ′ + ~V · ~P ′ + 1

2
µV 2
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Figure 1: An infinitesimal rotation around the z axis (the direction of δ~φ).

where E ′ = 1
2

∑
imi

~v′
2

i + U , µ =
∑

imi, and ~P ′ =
∑

imi~v
′
i. This is the

law of transformation of energy between inertial frames in relative motion.
E ′ is the energy of the system in the O′ system of reference. If O′ is a
system of reference comoving with the centre of mass then ~P ′ = 0, and E ′

is called the internal energy of the system Ei.

Angular momentum
The next conservation principle is related to the isotropy of space. This
principle states that the mechanical properties of a physical system do not
change it it undergoes a rotation in space. To infer the implications of this
principle we will calculate how the Lagrangian transforms under an in-
finitesimal rotation of the system. We will use a vector δ~φ whose direction
corresponds to the axis of rotation. Its magnitude is the angle of rotation
δφ. We will use spherical coordinates to make the calculation. To visual-
ize it in cartesian coordinates, we can think that the direction of rotation
corresponds to the z axis.

We notice that performing a rotation only (and not i.e., a rotation com-
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bined with a translation) δ~r is necessarily perpendicular to δ~φ and δ~r. So
we have

δ~r = δ~φ× ~r (30)

We can see from the figure Fig 1 that this is consistent with

|δ~r| = r sin θδφ (31)

We also notice that under a rotation the direction of ~r changes and conse-
quently, as we learn in introductory physics, there is a change in the direc-
tion of the velocity.

δ~v = δ~φ× ~v (32)

We can now calculate the change in the Lagrangian due to these infinitesi-
mal changes. We will impose, following our principle that the Lagrangian
does not change under this rotation.

δL =
∑
i

(
∂L

∂~ri
· δ~ri +

∂L

∂~vi
· δ~vi

)
= 0 (33)

With ~pi = ∂L
∂~vi

and ∂L
∂~ri

= ~̇pi and using (29), we can write this variation,

δL =
∑
i

(
~̇pi · ~δφ× ~ri + ~pi · δφ× ~vi

)
= 0 (34)

Remember the properties of the mixed product:

~a · (~b× ~c) = ~b · (~c× ~a) = ~c · (~a×~b) = (~b× ~c) · ~a
= (~c× ~a) ·~b = (~a×~b) · ~c
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This means that we can write

δL =
∑
i

(
~δφ · ~ri × ~̇pi + ~δφ · ~vi × ~pi

)
(35)

= ~δφ ·
∑
i

(
~ri × ~̇pi + ~vi × ~pi

)
= ~δφ · d

dt

∑
i

~ri × ~pi = 0

Of course ~δφ is arbitrary and not 0 which means that d
dt

∑
i ~ri×~pi = 0. This

means that for a closed system the quantity
∑

i ~ri×~pi remains constant after
a rotation. We call it the angular momentum of the system:

~M ≡
∑
i

~ri × ~pi (36)

Like the linear momentum, the angular momentum is also additive regard-
less of the motion of the particles in the system.

There are no other integrals of motion for an isolated mechanical sys-
tem, so we have seven integrals of motion: the energy, the three space com-
ponents of the linear momentum and the three components of the angular
momentum. Notice that the value of the angular momentum will depend
strongly on the system it is calculated from.

We can now, as we did with the linear momentum, calculate the value
of the angular momentum from two inertial systems in relative motion with
respect to each other. Let’s say we do it from a system where one vector
position of the system is ~r and another one from where it is ~r = ~r′ + ~a
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~M =
∑
i

~ri × ~pi (37)

=
∑
i

~r′i × ~pi + ~a×
∑
i

~pi

= ~M ′ + ~a× ~P

Notice from this that the value of the angular momentum will depend strongly
on the system it is calculated from. Except when the system is at rest as a
whole (i.e. ~P = 0 in which case we have ~M = ~M ′. Of course, the fact that
it’s value is relative to the system from where it’s observed is still consistent
with its conservation.

We will assume now that the two systems O and O′ differ also by a rel-
ative velocity ~V . We can assume for simplification that O and O′ coincide
at some instant of time. Then the position vectors of the system’s particles
will be the same and their velocities are related ~vi = ~v′i + ~V

~M =
∑
i

mi~ri × ~vi =
∑
i

mi~ri × ~v′i +
∑
i

mi~ri × ~V (38)

= ~M ′ + µ~R× ~V

where we have use the definition of center of mass ~R =
∑

imi~ri/µ where
µ is the total mass of the system.

If O′ is the frame in which the system is considered at rest as a whole
then ~V is the velocity of its center of mass and the total momentum relative
to O is ~P = µ~V and we have

M = ~M ′ + ~R× ~P (39)

where we see that the angular momentum is made up of an intrinsic angular
momentum in a frame with respect to which is at rest plus the angular
momentum due to the motion of the system as a whole ~R× ~P .
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We may have situations in which the angular momentum is not con-
served completely (i.e. all three components of it). But depending on the
symmetry of the external field a particular component could, i.e. the one
of the direction of the symmetry of the field, because in this case a rotation
around that axis will not change the state of the system.

Examples

In the case of a central field, where its effect depends on the distance
of the system to the center of it, any rotation around an axis perpendicular
to the field direction will not change the angular momentum of the system
provided that it is defined with respect to the center of the field.

In the case of a homogeneous field in the z direction, a rotation around
it will not change it either.

This is the proof: The z component of the angular momentum is

Mz =
∑
i

mipiz =
∑
i

mi((xiẏi − yiẋi) (40)

But using cylindrical coordinates this is

Mz =
∑
i

miri
2φ̇i (41)

But the Lagrangian in cylindrical coordinates is

L =
1

2

∑
i

mi(ri
2 + riφ̇

2
i + ż2i )− U (42)

Clearly this is

Mz =
∑
i

∂L

∂φ̇i
(43)

as (4) shows.
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Mechanical similarity
We saw in Lesson 1 that multiplication of a Lagrangian by a constant does
not affect the equations of motion. We could use this fact to try to infer
properties of the motion of a particular system without fully integrating the
equations of motion.

One such a case is when the potential energy is a homogeneous function
of the coordinates.

In our case we will have

U(α~r1, α~r2, ..., α~rn) = αkU(~r1, ~r2, ..., ~rn) (44)

where α is a constant and k is the degree of homogeneity of U .
We will try the following transformation: multiply the coordinates by a

factor α and the time by a factor β: ~ri → α~ri and t→ βt. All the velocities
are changed then by a factor α/β and the kinetic energy by α2/β2. If α
and β are such α2/β2 = αk, which means β = α1− 1

2k, the net result is to
multiply the Lagrangian by a factor αk and the equations of motion do not
change.

What is the meaning of such a transformation? Changing all the coordi-
nates by the same factor is equivalent to replacing the paths to be followed
by the system for similar ones, just of a different size.

If the potential energy is a homogeneous function of degree k in the
Cartesian coordinates, the equations of motion permit a series of geomet-
rically similar paths, and the times of the motion between corresponding
points are given by

t′

t
=

(
l′

l

)1− 1
2k

(45)

where
(
l′

l

)
is the ratio between the linear dimensions of equivalent paths un-

der the transformation. Other physical quantities are also equivalente under
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the transformation, i.e. the velocities, energies and angular momentum are,

v′

v
=

(
l′

l

) 1
2k E ′

E
=

(
l′

l

)k
M ′

M
=

(
l′

l

)1+ 1
2k

(46)

Examples

1) For small oscillations, as we know from previous courses of intro-
ductory mechanics, the potential is of the form U ∝ r2. We can see from
(46) that the period of oscillation is independent of the amplitude.

2) In a uniform field of force the potential energy is a linear function of
the coordinates (the force is constant). In these cases k = 1 and (46) leads
to t′

t =
(
l′

l

) 1
2 . This means that the time of motion for two different paths

goes like the square root of the ratio of distances travel. In the case of free
fall this applies to the time of fall from a given altitude.

3) In the case of a Newton’s (or Coulomb’s) potential k = −1 and we

obtain from (46) t
′

t =
(
l′

l

) 3
2 which is precisely Kepler’s third law (the square

of the ratio of the periods of revolution between two orbits is equal to the
cube of the ratio of their sizes.

The Virial Theorem of Classical Mechanics

If the potential energy is a homogeneous function of the coordinates
and the motion takes place in a finite region of space, there is a simple re-
lationship between the average values of the kinetic and potential energies,
which plays a prominent role in Astronomy, called the Virial Theorem.

If we apply the Euler’s theorem to the kinetic energy of a physical sys-
tem, due to the fact that T = T (~v2), we get

∑
a
va · ∂T/∂va = 2T we can
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write:

2T =
∑
a

pa · va =
d

dt

(∑
a

pa · ra

)
−
∑
a

ra · ṗa (47)

We can now average this equation with respect to time. The average value
of a function of time can be defined:

f̄ = lim
τ→∞

1

τ

∫ τ

0

f(t)dt

But if f(t) is the time derivative dF (t)/dt of a bounded function F (t),

f̄ = lim
τ→∞

1

τ

∫ τ

0

dF

dt
dt = lim

τ→∞

F (τ)− F (0)

τ
= 0

If we now look at equation (47)
∑
a
pa · ra is bounded (positions remain

within a given region and momenta are not infinite) so when we take the
average of 2T the first term on the right hand side is 0. For the second term
we can replace ṗa by −∂U/∂ra following Newton’s second law and get:

2T̄ =
∑
a

ra · ∂U/∂ra (48)

Using now Euler’s theorem:

2T̄ = kŪ (49)

Since T̄ + Ū = Ē = E (energy is conserved!), (49),

Ū = 2
E

k + 2
, T̄ =

k

k + 2
E (50)

expressing Ū and T̄ in terms of the total energy of the system.
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For small oscillations k = 2 and we get Ū = E/2 and T̄ = E/2

T̄ = Ū (51)

Due to the fact that in Newton’s gravitational potential is k = −1 (49),
leads as well to:

Ū = 2E , T̄ = −E (52)

Showing that in this type of interaction motion of a system is bounded
(limited to occupy a finite region) only if the energy is negative.

In Astronomy
∑
a
ra · ∂U/∂ra is called the virial of the system.

A unified approach to conservation laws: Noether’s
theorem
The formalism developed studying the constants of motion in Lagrangian
mechanics, which we discussed in the previous sections, was developed in
1788 and a variation of it using the Hamiltonian formalism, which we will
discuss later on, was developed in 1883.
In 1918, Emily Noether, provided a uniform framework which was more
general and mathematically very elegant, proving what now is called Noether’s
first theorem:

Every differentiable symmetry of the action of a physical system with
conservative forces has a corresponding conserved quantity.

Let’s try to understand the meaning of this theorem. We need a few
definitions. First we define the meaning of conserved quantity:
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Conserved quantity
From the principle of least action we found that the action

S(qi(t)) =

∫
L

(qi, q̇i, t)dt (53)

is an extreme(minimum) when qi(t) satisfies the Euler-Lagrange equation:

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 (54)

As we already studied this condition guarantees that δS vanishes for all
variations qi(t)→ qi(t) + δqi(t) which are zero at the beginning and end of
the trajectory.
Let’s assume then that qi(t) is a solution of (54). We will called any function
f = f(qi(t), q̇i(t), that fulfills the condition that

df

dt qi(t)
= 0 (55)

along the actual path of motion, a conserved quantity.

Symmetry of the action
A symmetry of the action is any transformation of the path qi(t)→ λi(qj(t), t)
that leaves the action invariant.

S[qi(t)] = S[λi(qj(t), t)] (56)

and if λi(qj) represents a continuous transformation of qi, we can expand
the transformation to keep at first order

qi → q′i = qi + εi(qj) (57)

and where δqi obviously is

δqi = q′i − qi = εi(qj) (58)
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and with this an infinitesimal change in the action is

δεS = S[qi + εi(qj)]− S[qi] = 0 (59)

Notice that in principle, this is true regardless of the fact that qi(t) satis-
fies the E-L equations or not. Additionally if the action is invariant under
an infinitesimal symmetry, we can perfrom several of them, provided the
transformations are smooth mathematically, and obtain a finite symmetry
transformation. We can now look at Noether’s theorem:

Suppose the action depends on n functions qi(t) has a symmetry such
that

δqi = q′i − qi = εi(qj) (60)

Then the quantity

I =
∂L(qi(λ))

∂q̇i
εi(qj) (61)

is conserved.

Proof

The existence of a symmetry implies

δεS[q(t)] ≡0

≡
N∑
i=1

∫ (
∂L(qi(t), q̇i))

∂qi
εi(qj) +

∂L(qi(t), q̇i))

∂q̇i

dεi(qj)

dt

)
dt

(62)

We can integrate the second term by parts

0 =

∫ (
∂L(qi(t), q̇i))

∂qi
εi(qj)

)
+
d

dt

(
∂L(qi(t), q̇i)

∂q̇i
εi(qj)

)
− d

dt

(
∂L

∂q̇i
εi(qj)

)
dt

=
∂L

∂q̇i
εi(qj)

∣∣∣∣t2
t1

+

∫ (
∂L

∂qi
− d

dt

(
∂L

∂q̇i

))
εi(qj)dt (63)
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This is an expression valid for every possible path. Let’s assume now
that the path obeys the principle of least action, i.e. our system equations
of motion are Euler Lagrange’s equations of motion (54):

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 (64)

Then the integral in equation (63) vanishes and we have

δS(qi) =
∂L

∂q̇i
εi(qj)

∣∣∣∣t2
t1

=I(t2)− I(t1) = 0 (65)

where

I =
∂L(qi, q̇i)

∂q̇i
εi(qj) (66)

From (65) we have then that

dI

dt
= 0 (67)

So I is a constant of the motion.
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