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Classical Covariance
This course is, fundamentally, a study of the mechanics of point like parti-
cles (material points). We will not be studying the mechanics of the contin-
uum or fluids. The foundations developed through this course are essential
to pursue these studies for those of you who are interested, though.

In absolutely any and all respects this is a foundational course for the
discipline of physics.

To understand the approach we will take throughout the semester, it is
worthwhile to reflect on the meaning of invariance of the law of physics.

Diffeomorphism invariance is one the most fundamental concepts in-
troduced by the modern physics of the XX century. Its first incarnation was
actually a product of Galilean relativity. Diffeomorphism1 invariance, sim-
ply means “invariance of the laws of physics between coordinate systems.”
It can also be called coordinate covariance, or just covariance. This idea
underlies the foundations of physics as we currently understand it. The
invariance in the description of motion from inertial systems in relative
motion which each other can be called classical covariance. In the special
theory of relativity we have special covariance, while in the general theory
of relativity we talk of general covariance, namely that the law of physics
are the same even for non-inertial systems of reference. Simply put this
means: the use of any type of coordinate system does not affect the physics
experienced by different observers. A specific physics calculation applied
to some problem should give exactly the same answers regardless of the use
of any particular coordinate system (Cartesian, spherical, cylindrical, etc).

On the other hand it is true that depending on the coordinates used we
1In mathematics, a diffeomorphism is an invertible function that maps one differentiable manifold (a

“space” where there are no singularities) to another such that both the function and its inverse are differen-
tiable.
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could get what, at first glance, seem to be very dissimilar looking equations
representing the same physical situation. For example Newton’s equations,

~F = m~a (1)

in 2-D cartesian coordinates becomes:

Fx = max (2)
Fy = may (3)

or more explicitly

Fx = m
d2x

dt2
(4)

Fy = m
d2y

dt2
(5)

or

Fx = mẍ (6)
Fy = mÿ (7)

But if we use polar coordinates r, θ we can not write

Fr = mr̈ (8)

Fθ = mθ̈ (9)

(8) and (9) are NOT the equations of motion of our system. Using the
relationship existing between the coordinates:

x = r cos θ (10)
y = r sin θ (11)

We have a transformation law between both systems and we can obtain

Fr = mr̈ −mrθ̇2 (12)

Fθ = mrθ̈ + 2mṙθ̇ (13)
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Note: Remember that vectors under a change of coordinate, like
x, y → r, θ transforms in this manner:(

Fr
Fθ

)
=

(
∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

)(
Fx
Fy

)
(14)

How can we write the laws of physics in a format that is invariant in
any coordinate system? i.e. a form that is coordinate covariant, yet it can
be used after we choose a coordinate system? This is what we will explore
in what follows.

Generalized coordinates
We already know from introductory physics the main quantities associated
with the motion of a particle, namely position, velocity and acceleration.
To define the position of a system of N particles in space we will use N
radius vectors, i.e. 3N coordinates. The number of independent quantities
that need to be specified to uniquely determine the position of a system
is called the number of degrees of freedom. This quantities (3N) do not
need to be cartesian coordinates. We will use the coordinates that seem
to be more convenient to the nature (or symmetry) of our problem. Any n
quantities q1, q2, ...qn which completely define the position of a system with
n degrees of freedom are called the generalized coordinates of the system,
the derivatives q̇1, q̇2, ...q̇n are called the generalized velocities.

It is clear that knowing all the generalized coordinates for a given sys-
tem it is not enough to forecast its position at a later time. But observation
indicates that if additionally we know all the generalized velocities at the
same instant of time, we can calculate the subsequent evolution of the sys-
tem. This means that knowing all the qi and q̇i at a given instant of time
we can uniquely identified the accelerations q̈i. The relations between the
accelerations, velocities and coordinates are called the equations of motion.
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As we learned with Newton’s equations they are second order differential
equations for qi(t). Their integration makes it possible to determine the
functions qi(t) and consequently the path or trajectory of the system.

The principle of least action
The principle of least action (sometimes called Hamilton’s principle2) is
the most general formulation of a universal law governing the motion of a
mechanical system. The principle states that every mechanical system is
characterized by a definite function L(q1, q2, ...qn, q̇1, q̇2, ...q̇n, t) or for the
sake of brevity L(q, q̇, t) which satisfies a very particular condition. The
function L is called the Lagrangian of the system. If we assume that the
system has at a given time ti an initial position qi and at a later time tf a
position qf , we can construct the following integral

S =

∫ tf

ti

L(q, q̇, t)dt (15)

which is called the action. We consider all paths between qi and qf in
principle mechanically possible (see the illustration in figure 1).

The principle states that the action S given by the integral (14) takes the
least possible value. Notice that L depends only on q and q̇ reflecting our
previous statement that knowledge of these quantities is sufficient to know
the state of the system as a function of time.

Let’s explore the implication of this principle. We will see that it em-
bodies the needed equations of motion that we are after.

Let’s assume that q = q(t)realizes the minimum of S. This of course
means that whenever we consider

2Sir William Rowan Hamilton (3/4 August 1805 – 2 September 1865) was an Irish mathematician, as-
tronomer, and physicist.
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Figure 1: The infinitely many possible paths that the system could follow
from qi to qf

q(t) + δq(t) (16)

where δq(t) is a very small quantity in the interval between ti and tf ,
S increases its value. δq(t) is called a variation of q(t). But notice that
a requirement of our principle is that δqi(t) = δqf(t) = 0. What is the
change in S when we change from q(t) to q(t) + δq(t)?:

δS =

∫ tf

ti

L(q + δq(t), q̇ + δq̇(t), t)dt−
∫ tf

ti

L(q, q̇, t)dt (17)

If we expand this expression in powers of q and q̇(t) the leading terms will
be first order. Remember that we assume δq(t) to be very small. So we can
write the principle of least action as:

δS = δ

∫ tf

ti

L(q, q̇, t)dt = 0 (18)

5



Performing the variation up to first order:∫ tf

ti

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt = 0 (19)

We can integrate by parts the second term:∫ tf

ti

∂L

∂q̇
δq̇dt =

∫ tf

ti

∂L

∂q̇

dδq

dt
dt =

[
∂L

∂q̇
δq

]tf
ti

−
∫ tf

ti

d

dt

∂L

∂q̇
δqdt = 0 (20)

But δqtf = δqti = 0 (this condition is integral to the principle of least
action) so the first term integrated in (19) is also 0. Using this result in (17)
and (18) we get:

δS =

∫ tf

ti

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δqdt = 0 (21)

This means that the action will be a minimum (or more properly an
extremum) if the following equations, called the Lagrange’s equations (or
sometimes the Euler-Lagrange equations), are satisfied:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (22)

Clearly if the system has more than one degree of freedom the equations
are:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (i = 1, 2, ..., n) (23)

If we know the Lagrangian of a physical system then equations (22) are the
equations of motion of our system. The E-L equations are a set of n second
order equations for the n unknown functions qi. The general solution will
have 2n arbitrary constants. To determine them and to consequently know
the motion of the system we need to know the initial conditions which
determine the state of the system at a given time. Typically we call these
the initial positions and initial velocities.
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Some properties of the Lagrangian
If we have a mechanical system which can be described as having two
Lagrangians: LA and LB when we have them far apart enough that there
is no interaction between both systems, the Lagrangian of the combined
system is :

L = LA + LB (24)

Also if we multiply a Lagrangian by a constant, the equations of motion do
not change. But this is equivalent to establishing the unit system to be used.

If two Lagrangians differ only by the total time derivative of a function
f(q, t),

L′(q, q̇, t) = L(q, q̇, t) +
d

dt
f(q, t) (25)

and the action is

S ′ =

∫ tf

ti

L′(q, q̇, t)dt =

∫ tf

ti

L(q, q̇, t)dt+

∫ tf

ti

d

dt
f(q, t)dt (26)

=S + f(qf , tf)− f(qi, ti)

the two actions differ in a quantity that when variated it will give zero,
i.e. δS ′ = δS. The implication of this result is that the Lagrangian is
only defined up to an additive total time derivative of a function of the
coordinates and time.

Galileo’s relativity principle
We need frames to describe the mechanical evolution of physical systems
or to analyze them. Galileo understood that there were privileged systems
from where to describe motion. These systems of reference are infinitely
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many and equivalent differing between them in their relative constant ve-
locity. A particular frame moving at the speed and in the same direction
of an object with constant velocity will describe the motion of this object
as at rest in the frame. These are the inertial frames or reference. In these
frames space is homogeneous and isotropic. Notice that these statements
are based on observations and experience. An important implicit concept
here is locality. We know that the Earth is not an inertial system, and con-
sequently the “local” universe does not appear isotropic or homogeneous.
But local systems like the boat with the sailor dropping a cannonball from
the mast and the observer on the pier do perceive their “local” universe as
homogeneous and isotropic.

Empowered with the concept of inertial systems we can infer the prop-
erties, or main features, or better put, the functional form of the Lagrangian
for a free particle, i.e. a particle moving freely in an inertial system of
reference. We conclude from the previous discussion that:

1. L can not depend on the position vector ~r, be its length or the direc-
tion of its position, because otherwise a privileged direction would
render other inertial systems of reference anisotropic or inhomoge-
neous.

2. L must be a function of the velocity ~v only but not of its direction.

3. L must then be a function of |~v|, ie. must be a function of its magni-
tude ~v2 = v2.

4. Since L is independent of ~r we then have in (21) ∂L
∂q = ∂L

∂~r = 0.

5. The resulting E-L equations are d
dt

(
∂L
∂q̇

)
= d

dt

(
∂L
∂~v

)
= 0.

Hence

∂L

∂~v
= constant (27)
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Having assume that our L is of the form L = αv2 this implies that

~v = constant. (28)

In an inertial frame, any free motion takes place with a constant velocity
(in magnitude and direction). This is Galileo’s law of inertia.

A clear consequence of this formulation is that all inertial frames of
reference will describe the motion of a free particle equivalently. Namely
as a motion with constant velocity (in magnitude and direction). There
are no absolute or preferred systems of reference. This is the Principle of
Galilean Relativity.

If two reference frames O and O′ differ by a relative velocity ~V , the
coordinates of the free particle as described from the two frames are:

~r = ~r′ + ~V t (29)

where ~r are the coordinates of our particle from O and ~r′ are the ones from
O′. In our formalism we understand that the time

t = t′. (30)

(28) and (29) constitute a Galilean transformation.
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Galilean Relativity and Special Relativity
Galileo’s relativity principle implies that the mechanical equations of
motion are invariant under a Galilean transformation -(28) and (29)-.
Notice that if we remove requirement (29) we need an equation relat-
ing the time between O and O′. When several experiments performed
by the end of the XIX century were indicating a clear break in Galilean
Relativity: the speed of light was the same for all inertial systems of
reference, both (28) and (29) have to be replace to account for the ob-
servation. Galilean transformation were then replaced by the Lorentz
transformations which respected the invariance of the speed of light.
Notice the difference:

~r′ =
~r − ~V t

(1− V 2

c2 )1/2
(31)

t′ =
t− ~V ·~x

c2

(1− V 2

c2 )1/2
(32)

with equations (28) and (29). Lorentz equations obey a different rel-
ativity, Special Relativity which states that the mechanical equations
are the same in all inertial systems of reference with the addition that
the velocity of light c is the same in all of them. Notice that if ~V � c
equations (30) and (31) become (28) and (29).

The Lagrangian of a free particle
To figure out the functional form of the Lagrangian for a free particle we
could use our knowledge from the previous section. If in system O the
particle has velocity ~v, in O′ it should have velocity ~v′ = ~v + ~ε. So the
Lagrangian L′ can only differ from L(v2) if at all by a total derivative of
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a function of the coordinates and time (remember the discussion after the
end of section 3.1).

We then have

L(v′
2
) = L

(
(~v + ~ε)2

)
= L(v2) +

∂L

∂v2
2~v · ~ε. (33)

The second term in the previous equation is a total derivative only if it is
a linear function of ~v. This implies that ∂L

∂v2 does not depend on ~v. This
implies then that the Lagrangian has to be proportional to v2:

L =
1

2
αv2 (34)

This Lagrangian satisfies the principle of relativity. If we replace ~ε for
a finite relative velocity ~V between frames O and O′.the Lagrangian in the
prime system will be

L′ =
1

2
αv′

2
=

1

2
α(~v + ~V )2 =

1

2
αv2 + α~v · ~V +

1

2
αV 2 (35)

L′ = L+
d

dt
(α~r · ~V +

1

2
αV 2t) (36)

α is the mass of the particle so we will call it m:

L =
1

2
mv2 (37)

and in the case of a system of n particles which did not interact we have:

L =
n∑
i=1

1

2
miv

2
i (38)
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in section (3.1) we said that if we multiply a Lagrangian by a constant the
equations of motion do not change and that the multiplying factor is equiv-
alent to establishing the unit system to be used.

We can also see that m > 0. The principle of least action establishes
that

S =

∫ 2

1

1

2
mv2dt (39)

has a minimum from point 1 to point 2. That would be impossible if the
integrand is definite negative.

The Lagrangian of a free particle in different coordinates
To obtain the Lagrangian in different coordinates it suffices to notice that:

v2 =

(
dl

dt

)2

=
(dl)2

(dt)2
(40)

In cartesian coordinates then dl2 = dx2 + dy2 + dz2 and:

L =
1

2
m(ẋ2 + ẏ2 + ż2) (41)

In cylindrical coordinates dl2 = dr2 + r2dφ2 + dz2 and then

L =
1

2
m(ṙ2 + r2φ̇2 + ż2) (42)

In spherical coordinates dl2 = dr2 + r2dθ2 + r2 sin2 θdφ2 and then:

L =
1

2
m(ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ) (43)
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The Lagrangian for a system of particles
Let’s consider a system of particles which may interact which each other
but with no other bodies. This is a closed system. In this situation, expe-
rience from observations indicate that the interaction between the particles
can be represented by a function of the coordinates (i.e. the position of the
particles), U(~r1, ~r2, ...~rn). Of course U reflects the nature of the interaction
at play. Notice that we use U with a − sign in the Lagrangian.

L =
n∑
i=1

1

2
mivi

2 − U(~r1, ~r2, ..., ~rn) (44)

where ~ri is the radius vector of the i particle. This is the typical form for the
Lagrangian describing a closed system.

∑n
i=1

1
2mivi

2 is called the kinetic
energy of the system and U its potential energy. We will discuss in the next
lesson the reason for choosing these names for these quantities.

A comment about the function U . We are taking a phenomenological
approach to describe the interactions between particles. We are assum-
ing that U is a function of the coordinates of the particles. If they change
their position then U changes. Notice that in our description we are not
assuming a potential function that depends explicitly on the time (although
it does reflect evolution with time, through the kinetic energy U is only
a function of the coordinates). This implies an instantaneous propagation
of the interactions (action at distance). If we were to accept a time that
is frame dependent like with Lorentz transformations in Special Relativity,
we would need an entire reformulation of our theory. So far we are working
assuming (28) and (29). If we were not we would need a relativistic theory
of mechanics. We may say something about it at the end of this course.

Regarding the isotropy of time, which we mentioned before, we can
see it clearly expressed in the Lagrangian where the kinetic energy shows
implicitly its time dependence. If we substitute −t for t clearly nothing
changes. The equations of motion remain the same. It is in this sense that
the laws of classical mechanics are reversible. The equations of motion
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given the Lagrangian are

d

dt

∂L

∂~vi
=
∂L

∂~ri
(45)

If we use the Lagrangian from (43) in (44) we get

mi
d

dt
~vi = −∂U

∂~ri
(46)

These are called Newton’s equations of motion which are the foundation of
the mechanics of particles. we called force the vector:

~F = −∂U
∂~ri

(47)

which is acting on particle i. Similarly to U it depends on the coordinates
of the particles, but not on their velocities. This is showing that the accel-
eration vectors are only functions of the coordinates.
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Galileo and the definition of acceleration

Galileo was the first scientist to define acceleration as the time rate
change of velocity: a crucial concept. But before this successful defi-
nition, his first attempts were defining it as the change of velocity with
distance. Let’s explore these ideas. We will see that such a definition
would lead to the trajectories being exponentials, not parabolas. Let’s
assume that acceleration is “change of velocity with position (i.e. with
distance)”. We would have then,

a =
dv

dx
= g (48)

where g = −9.8m/s2 From there you get

dv = gdx→
∫
dv =

∫
gdx→ v = gx+ const. (49)

But this is

dx

dt
= gx+ const. (50)

And from there we get:

dx

x
= gdt→

∫
dx

x
=

∫
gdt→ lnx = gt (51)

where ln is the natural logarithm. We can take the exponential of both
sides to get:

x(t) = exp(gt) = e−9.8t (52)

And of course these curves are very different from parabolas. It is in-
teresting to plot the two solutions that could be obtained with a simple
case. Let’s look at a stone drop vertically from a 10 meters height.
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Figure 2: An object dropped from 10m above the ground falling exponen-
tially -blue- and parabolically -red-

The two solutions are:

x(t) = 10 exp(gt) = 10e−9.8t (53)

and

x(t) = 10− 9.8

2
t2 (54)

The exponential curve in Figure 2, does not correspond to the actual
trajectory. Experiments determine clearly that the parabola is the right
mathematical expression, This is a conclusive proof that defining ac-
celeration as the change in velocity with time is the right one.

Notice that U can be defined up to constant. It is natural to make U = 0
when the separation between particles is large enough that no interaction
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is experienced. When using coordinates other than Cartesian ones we will
use the following transformation:

xi = fi(q1, q2, ..., qn), ẋi =
n∑
k=1

∂fi
∂qk

q̇k (55)

We substitute them in

L =
1

2

n∑
i=1

mi(ẋi
2 + ẏi

2 + żi
2)− U (56)

to get the following Lagrangian

L =
1

2

∑
i,k

aik(q)q̇iq̇k − U(q), (57)

We notice that in the new coordinates the Lagrangian will be still a quadratic
function of the generalized velocities but the kinetic energy may depend on
the new coordinates as well.

The Lagrangian of open systems
If we have an open system A which interacts with a system B , we can con-
sider A+B as a closed system. We can find the Lagrangian of A by using
the Lagrangian LA+B and replace the coordinates qB by functions of time.
If A+B is closed we get then L = TA(qA, q̇A) + TB(qB, q̇B)− U(qA, qB),
where the first two terms are the kinetic energies of the system A and B
and the third term is their combined potential energy. We can now sub-
stitute for qB the given functions of time and remove TB(qB, q̇B) which,
depending on time, is a total time derivative of a function of time. We will
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get L = TA(qA, q̇A)− U(qA, qB(t)).

The motion of a system in an external field is described by a Lagrangian
where the potential energy may be an explicit function of time.

As an example the Lagrangian for a single particle moving in an exter-
nal field has this general form

L =
1

2
mv2 − U(~r, t) (58)

The corresponding equation of motion is

m~̇v = −∂U
∂~r

(59)

Uniform field
When we consider physical systems where the same force acts on a par-
ticle at any point in the field considered, the field is called uniform. The
associated potential energy is then

U = −~F · ~r. (60)

Application of the Lagrangian formalism to physical prob-
lems
The actual number of degrees of freedom of a physical system can be fur-
ther reduced by constraints. i.e. a system subjected to move within a con-
fined region of space. If the friction and masses associated with the struc-
tures imposing these constraints can be neglected we can follow the for-
malism described in this chapter to find the equations of motion. We will
just use as many generalized coordinates as the actual number of degrees
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of freedom of our system. i.e. if we impose l number of constraints on a
system with originally n degrees of freedom then we can find the equations
of motion of our system utilizing n− l generalized coordinates.

Generalized forces and Lagrange multipliers

We can consider the case where the n generalized coordinates are not in-
dependent. All the virtual displacements δqi are no longer possible but
subjected to the imposed constraints. We can consider just one condition

n∑
i=1

Λiδqi = 0 (61)

Notice that when given the constraints this equation defines Λi. There is
a very special kind of constraint, the one for which a quantity Φ can be
defined such

n∑
i=1

Λiδqi = dΦ(q) (62)

In this case the constraint is equivalent to Φ(q) being a constant and it is
called holonomic. In this case we can express one generalized coordinate
as a function of the n − 1 others. If the constraint is non-holonomic then
we need to keep all the coordinates and use Lagrange multipliers. In that
case if there are s differential constraints of the form (60) we have

Ai(q, q̇, q̈, t) = Qi(q, q̇, t) +
s∑

k=1

λkΛi
k(q, t) (63)

Examples
Problem 1
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Figure 3: A double pendulum

Find the Lagrangian for the double pendulum (see Figure 3) placed near
the surface of the Earth (acceleration g).

Solution
The coordinates are φ1 and φ2. Then

T1 =
1

2
m1l

2
1φ̇

2
1, U1 = −m1gl1 cosφ1 (64)

To find T2 for the second particle we start with Cartesian coordinates: We
have

x2 = l1 sinφ1 + l2 sinφ2, y2 = l1 cosφ1 + l2 cosφ2; (65)

After taking the derivative and squaring it we get

T2 =
1

2
m2

(
ẋ2 + ẏ2

)
=

1

2
m2

(
l21φ̇

2
1 + l22φ̇

2
2 + 2l1l2 cos(φ1 − φ2)φ̇1φ̇2

)
(66)

where we have used that cos(φ1 − φ2) = cosφ1 cosφ2 − sinφ1 sinφ2. The
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Lagrangian then is

L =
1

2
(m1 +m2)

(
l21φ̇

2
1 + l22φ̇

2
2 + 2l1l2 cos(φ1 − φ2)φ̇1φ̇2

)
(67)

+ (m1 +m2)gl1 cosφ1 +mgl2 cosφ2

Problem 2

Figure 4: A sling

A rigid rod rotates (see Figure 4) in a horizontal plane around a fixed
point O with angular speed ω = φ̇. A bead of mass m can slide on it with-
out friction. Treat it like a point particle and find its Lagrangian and the
equations of motion.

Solution

We pick the plane of motion to be x − y with the z axis perpendicular
to it. This is a Galilean system in the sense that it is fixed and not rotating
with the rod. We will use polar coordinates. Let φ be the angle and r the
radius indicating the position of the bead.
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The kinetic energy is

T =
1

2
(ṙ2 + r2φ̇2). (68)

Notice that there is no potential energy, but this is not a free particle either.
The speed φ̇ is provided by an imposed external ω (i.e. an electric motor).
The weight of the bead due to gravity is balanced by the normal reaction
force of the rod, but there is no friction. Consequently the external forces
add up to 0. This is still a constrained system. So the Lagrangian is

L =
1

2
(ṙ2 + r2φ̇2). (69)

And the E-L equations are:

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0 (70)

How about φ? φ is constrained by the fact that φ̇ = ω. So the system has
only one degree of freedom. And the equation of motion is:

r̈ − rφ̇2 = 0 (71)

The solution of (70) is

r(t) = A cosh(ωt) +B sinh(ωt) (72)

Our initial conditions could be ṙ(0) = 0 and r(0) = r0. In that case the
solution is

r(t) = r0 cosh(ωt) (73)

Note: (70) express the fact that the centripetal acceleration r̈ is equal to a
“centrifugal force” rφ̇2.
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