
Classical Mechanics 2025
Lesson 1: Generalized Coordinates and the equations of

motion

Mario C Dı́az

Classical Covariance
This course is, fundamentally, a study of the mechanics of point like particles (material points). We will not
be studying the mechanics of the continuum or fluids. The foundations developed through this course are
essential to pursue these studies for those of you who are interested, though.

In absolutely any and all respects this is a foundational course for the discipline of physics.

To understand the approach we will take throughout the semester, it is worthwhile to reflect on the mean-
ing of invariance of the law of physics.

Diffeomorphism invariance is one the most fundamental concepts introduced by the modern physics of
the XX century. Its first incarnation was actually a product of Galilean relativity. Diffeomorphism1 invari-
ance, simply means “invariance of the laws of physics between coordinate systems.” It can also be called
coordinate covariance, or just covariance. This idea underlies the foundations of physics as we currently
understand it. The invariance in the description of motion from inertial systems in relative motion which
each other can be called classical covariance. In the special theory of relativity we have special covariance,
while in the general theory of relativity we talk of general covariance, namely that the law of physics are the
same even for non-inertial systems of reference. Simply put this means: the use of any type of coordinate
system does not affect the physics experienced by different observers. A specific physics calculation applied
to some problem should give exactly the same answers regardless of the use of any particular coordinate
system (Cartesian, spherical, cylindrical, etc).

On the other hand it is true that depending on the coordinates used we could get what, at first glance,
seem to be very dissimilar looking equations representing the same physical situation. For example Newton’s
equations,

~F = m~a (1)

1In mathematics, a diffeomorphism is an invertible function that maps one differentiable manifold (a “space” where there are no
singularities) to another such that both the function and its inverse are differentiable.
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in 2-D cartesian coordinates becomes:

Fx = max (2)
Fy = may (3)

or more explicitly

Fx = m
d2x

dt2
(4)

Fy = m
d2y

dt2
(5)

or

Fx = mẍ (6)
Fy = mÿ (7)

But if we use polar coordinates r, θ we can not write

Fr = mr̈ (8)

Fθ = mθ̈ (9)

(8) and (9) are NOT the equations of motion of our system. Using the relationship existing between the
coordinates:

x = r cos θ (10)
y = r sin θ (11)

We have a transformation law between both systems and we can obtain

Fr = mr̈ −mrθ̇2 (12)

Fθ = mrθ̈ + 2mṙθ̇ (13)

Note: Remember that vectors under a change of coordinate, like x, y → r, θ transforms in this
manner: (

Fr
Fθ

)
=

(
∂r
∂x

∂r
∂y

∂θ
∂x

∂θ
∂y

)(
Fx
Fy

)
(14)

How can we write the laws of physics in a format that is invariant in any coordinate system? i.e. a form
that is coordinate covariant, yet it can be used after we choose a coordinate system? This is what we will
explore in what follows.

Generalized coordinates
We already know from introductory physics the main quantities associated with the motion of a particle,
namely position, velocity and acceleration. To define the position of a system of N particles in space we will
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use N radius vectors, i.e. 3N coordinates. The number of independent quantities that need to be specified
to uniquely determine the position of a system is called the number of degrees of freedom. This quantities
(3N) do not need to be cartesian coordinates. We will use the coordinates that seem to be more convenient to
the nature (or symmetry) of our problem. Any n quantities q1, q2, ...qn which completely define the position
of a system with n degrees of freedom are called the generalized coordinates of the system, the derivatives
q̇1, q̇2, ...q̇n are called the generalized velocities.

It is clear that knowing all the generalized coordinates for a given system it is not enough to forecast its
position at a later time. But observation indicates that if additionally we know all the generalized velocities at
the same instant of time, we can calculate the subsequent evolution of the system. This means that knowing
all the qi and q̇i at a given instant of time we can uniquely identified the accelerations q̈i. The relations
between the accelerations, velocities and coordinates are called the equations of motion. As we learned with
Newton’s equations they are second order differential equations for qi(t). Their integration makes it possible
to determine the functions qi(t) and consequently the path or trajectory of the system.

The principle of least action
The principle of least action (sometimes called Hamilton’s principle2) is the most general formulation of a
universal law governing the motion of a mechanical system. The principle states that every mechanical sys-
tem is characterized by a definite function L(q1, q2, ...qn, q̇1, q̇2, ...q̇n, t) or for the sake of brevity L(q, q̇, t)
which satisfies a very particular condition. The function L is called the Lagrangian of the system. If we
assume that the system has at a given time ti an initial position qi and at a later time tf a position qf , we can
construct the following integral

S =

∫ tf

ti

L(q, q̇, t)dt (15)

which is called the action. We consider all paths between qi and qf in principle mechanically possible (see
the illustration in figure 1).

The principle states that the action S given by the integral (14) takes the least possible value. Notice that
L depends only on q and q̇ reflecting our previous statement that knowledge of these quantities is sufficient
to know the state of the system as a function of time.

Let’s explore the implication of this principle. We will see that it embodies the needed equations of
motion that we are after.

Let’s assume that q = q(t)realizes the minimum of S. This of course means that whenever we consider

q(t) + δq(t) (16)

where δq(t) is a very small quantity in the interval between ti and tf , S increases its value. δq(t) is
called a variation of q(t). But notice that a requirement of our principle is that δqi(t) = δqf (t) = 0. What
is the change in S when we change from q(t) to q(t) + δq(t)?:

δS =

∫ tf

ti

L(q + δq(t), q̇ + δq̇(t), t)dt−
∫ tf

ti

L(q, q̇, t)dt (17)

2Sir William Rowan Hamilton (3/4 August 1805 – 2 September 1865) was an Irish mathematician, astronomer, and physicist.
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Figure 1: The infinitely many possible paths that the system could follow from qi to qf

If we expand this expression in powers of q and q̇(t) the leading terms will be first order. Remember that we
assume δq(t) to be very small. So we can write the principle of least action as:

δS = δ

∫ tf

ti

L(q, q̇, t)dt = 0 (18)

Performing the variation up to first order:∫ tf

ti

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt = 0 (19)

We can integrate by parts the second term:∫ tf

ti

∂L

∂q̇
δq̇dt =

∫ tf

ti

∂L

∂q̇

dδq

dt
dt =

[
∂L

∂q̇
δq

]tf
ti

−
∫ tf

ti

d

dt

∂L

∂q̇
δqdt = 0 (20)

But δqtf = δqti = 0 (this condition is integral to the principle of least action) so the first term integrated in
(19) is also 0. Using this result in (17) and (18) we get:

δS =

∫ tf

ti

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δqdt = 0 (21)

This means that the action will be a minimum (or more properly an extremum) if the following equations,
called the Lagrange’s equations (or sometimes the Euler-Lagrange equations), are satisfied:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (22)

Clearly if the system has more than one degree of freedom the equations are:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (i = 1, 2, ..., n) (23)
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If we know the Lagrangian of a physical system then equations (22) are the equations of motion of our
system. The E-L equations are a set of n second order equations for the n unknown functions qi. The
general solution will have 2n arbitrary constants. To determine them and to consequently know the motion
of the system we need to know the initial conditions which determine the state of the system at a given time.
Typically we call these the initial positions and initial velocities.

Some properties of the Lagrangian
If we have a mechanical system which can be described as having two Lagrangians: LA and LB when
we have them far apart enough that there is no interaction between both systems, the Lagrangian of the
combined system is :

L = LA + LB (24)

Also if we multiply a Lagrangian by a constant, the equations of motion do not change. But this is equivalent
to establishing the unit system to be used.

If two Lagrangians differ only by the total time derivative of a function f(q, t),

L′(q, q̇, t) = L(q, q̇, t) +
d

dt
f(q, t) (25)

and the action is

S′ =

∫ tf

ti

L′(q, q̇, t)dt =

∫ tf

ti

L(q, q̇, t)dt+

∫ tf

ti

d

dt
f(q, t)dt (26)

=S + f(qf , tf )− f(qi, ti)

the two actions differ in a quantity that when variated it will give zero, i.e. δS′ = δS. The implication of
this result is that the Lagrangian is only defined up to an additive total time derivative of a function of the
coordinates and time.

Galileo’s relativity principle
We need frames to describe the mechanical evolution of physical systems or to analyze them. Galileo un-
derstood that there were privileged systems from where to describe motion. These systems of reference are
infinitely many and equivalent differing between them in their relative constant velocity. A particular frame
moving at the speed and in the same direction of an object with constant velocity will describe the motion
of this object as at rest in the frame. These are the inertial frames or reference. In these frames space is
homogeneous and isotropic. Notice that these statements are based on observations and experience. An im-
portant implicit concept here is locality. We know that the Earth is not an inertial system, and consequently
the “local” universe does not appear isotropic or homogeneous. But local systems like the boat with the
sailor dropping a cannonball from the mast and the observer on the pier do perceive their “local” universe as
homogeneous and isotropic.

Empowered with the concept of inertial systems we can infer the properties, or main features, or better
put, the functional form of the Lagrangian for a free particle, i.e. a particle moving freely in an inertial
system of reference. We conclude from the previous discussion that:
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1. L can not depend on the position vector ~r, be its length or the direction of its position, because
otherwise a privileged direction would render other inertial systems of reference anisotropic or inho-
mogeneous.

2. L must be a function of the velocity ~v only but not of its direction.

3. L must then be a function of |~v|, ie. must be a function of its magnitude ~v2 = v2.

4. Since L is independent of ~r we then have in (21) ∂L∂q = ∂L
∂~r = 0.

5. The resulting E-L equations are d
dt

(
∂L
∂q̇

)
= d

dt

(
∂L
∂~v

)
= 0.

Hence

∂L

∂~v
= constant (27)

Having assume that our L is of the form L = αv2 this implies that

~v = constant. (28)

In an inertial frame, any free motion takes place with a constant velocity (in magnitude and direction). This
is Galileo’s law of inertia.

A clear consequence of this formulation is that all inertial frames of reference will describe the motion of
a free particle equivalently. Namely as a motion with constant velocity (in magnitude and direction). There
are no absolute or preferred systems of reference. This is the Principle of Galilean Relativity.

If two reference frames O and O′ differ by a relative velocity ~V , the coordinates of the free particle as
described from the two frames are:

~r = ~r′ + ~V t (29)

where ~r are the coordinates of our particle from O and ~r′ are the ones from O′. In our formalism we
understand that the time

t = t′. (30)

(28) and (29) constitute a Galilean transformation.
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Galilean Relativity and Special Relativity
Galileo’s relativity principle implies that the mechanical equations of motion are invariant under
a Galilean transformation -(28) and (29)-. Notice that if we remove requirement (29) we need an
equation relating the time between O and O′. When several experiments performed by the end
of the XIX century were indicating a clear break in Galilean Relativity: the speed of light was
the same for all inertial systems of reference, both (28) and (29) have to be replace to account for
the observation. Galilean transformation were then replaced by the Lorentz transformations which
respected the invariance of the speed of light. Notice the difference:

~r′ =
~r − ~V t

(1− V 2

c2 )1/2
(31)

t′ =
t− ~V ·~x

c2

(1− V 2

c2 )1/2
(32)

with equations (28) and (29). Lorentz equations obey a different relativity, Special Relativity which
states that the mechanical equations are the same in all inertial systems of reference with the addition
that the velocity of light c is the same in all of them. Notice that if ~V � c equations (30) and (31)
become (28) and (29).

The Lagrangian of a free particle
To figure out the functional form of the Lagrangian for a free particle we could use our knowledge from the
previous section. If in system O the particle has velocity ~v, in O′ it should have velocity ~v′ = ~v + ~ε. So the
Lagrangian L′ can only differ from L(v2) if at all by a total derivative of a function of the coordinates and
time (remember the discussion after the end of section 3.1).

We then have

L(v′
2
) = L

(
(~v + ~ε)2

)
= L(v2) +

∂L

∂v2
2~v · ~ε. (33)

The second term in the previous equation is a total derivative only if it is a linear function of ~v. This implies
that ∂L

∂v2 does not depend on ~v. This implies then that the Lagrangian has to be proportional to v2:

L =
1

2
αv2 (34)

This Lagrangian satisfies the principle of relativity. If we replace~ε for a finite relative velocity ~V between
frames O and O′.the Lagrangian in the prime system will be

L′ =
1

2
αv′

2
=

1

2
α(~v + ~V )2 =

1

2
αv2 + α~v · ~V +

1

2
αV 2 (35)

L′ = L+
d

dt
(α~r · ~V +

1

2
αV 2t) (36)
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α is the mass of the particle so we will call it m:

L =
1

2
mv2 (37)

and in the case of a system of n particles which did not interact we have:

L =

n∑
i=1

1

2
miv

2
i (38)

in section (3.1) we said that if we multiply a Lagrangian by a constant the equations of motion do not change
and that the multiplying factor is equivalent to establishing the unit system to be used.

We can also see that m > 0. The principle of least action establishes that

S =

∫ 2

1

1

2
mv2dt (39)

has a minimum from point 1 to point 2. That would be impossible if the integrand is definite negative.

The Lagrangian of a free particle in different coordinates
To obtain the Lagrangian in different coordinates it suffices to notice that:

v2 =

(
dl

dt

)2

=
(dl)2

(dt)2
(40)

In cartesian coordinates then dl2 = dx2 + dy2 + dz2 and:

L =
1

2
m(ẋ2 + ẏ2 + ż2) (41)

In cylindrical coordinates dl2 = dr2 + r2dφ2 + dz2 and then

L =
1

2
m(ṙ2 + r2φ̇2 + ż2) (42)

In spherical coordinates dl2 = dr2 + r2dθ2 + r2 sin2 θdφ2 and then:

L =
1

2
m(ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ) (43)

The Lagrangian for a system of particles
Let’s consider a system of particles which may interact which each other but with no other bodies. This is a
closed system. In this situation, experience from observations indicate that the interaction between the parti-
cles can be represented by a function of the coordinates (i.e. the position of the particles), U(~r1, ~r2, ...~rn). Of
course U reflects the nature of the interaction at play. Notice that we use U with a − sign in the Lagrangian.

L =

n∑
i=1

1

2
mivi

2 − U(~r1, ~r2, ..., ~rn) (44)
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where ~ri is the radius vector of the i particle. This is the typical form for the Lagrangian describing a closed
system.

∑n
i=1

1
2mivi

2 is called the kinetic energy of the system and U its potential energy. We will discuss
in the next lesson the reason for choosing these names for these quantities.

A comment about the function U . We are taking a phenomenological approach to describe the inter-
actions between particles. We are assuming that U is a function of the coordinates of the particles. If they
change their position then U changes. Notice that in our description we are not assuming a potential function
that depends explicitly on the time (although it does reflect evolution with time, through the kinetic energy U
is only a function of the coordinates). This implies an instantaneous propagation of the interactions (action
at distance). If we were to accept a time that is frame dependent like with Lorentz transformations in Special
Relativity, we would need an entire reformulation of our theory. So far we are working assuming (28) and
(29). If we were not we would need a relativistic theory of mechanics. We may say something about it at
the end of this course.

Regarding the isotropy of time, which we mentioned before, we can see it clearly expressed in the
Lagrangian where the kinetic energy shows implicitly its time dependence. If we substitute −t for t clearly
nothing changes. The equations of motion remain the same. It is in this sense that the laws of classical
mechanics are reversible. The equations of motion given the Lagrangian are

d

dt

∂L

∂~vi
=
∂L

∂~ri
(45)

If we use the Lagrangian from (43) in (44) we get

mi
d

dt
~vi = −∂U

∂~ri
(46)

These are called Newton’s equations of motion which are the foundation of the mechanics of particles. we
called force the vector:

~F = −∂U
∂~ri

(47)

which is acting on particle i. Similarly to U it depends on the coordinates of the particles, but not on their
velocities. This is showing that the acceleration vectors are only functions of the coordinates.
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Galileo and the definition of acceleration

Galileo was the first scientist to define acceleration as the time rate change of velocity: a crucial
concept. But before this successful definition, his first attempts were defining it as the change of
velocity with distance. Let’s explore these ideas. We will see that such a definition would lead to the
trajectories being exponentials, not parabolas. Let’s assume that acceleration is “change of velocity
with position (i.e. with distance)”. We would have then,

a =
dv

dx
= g (48)

where g = −9.8m/s2 From there you get

dv = gdx→
∫
dv =

∫
gdx→ v = gx+ const. (49)

But this is

dx

dt
= gx+ const. (50)

And from there we get:

dx

x
= gdt→

∫
dx

x
=

∫
gdt→ lnx = gt (51)

where ln is the natural logarithm. We can take the exponential of both sides to get:

x(t) = exp(gt) = e−9.8t (52)

And of course these curves are very different from parabolas. It is interesting to plot the two solutions
that could be obtained with a simple case. Let’s look at a stone drop vertically from a 10 meters
height.

The two solutions are:

x(t) = 10 exp(gt) = 10e−9.8t (53)

and

x(t) = 10− 9.8

2
t2 (54)

The exponential curve in Figure 2, does not correspond to the actual trajectory. Experiments deter-
mine clearly that the parabola is the right mathematical expression, This is a conclusive proof that
defining acceleration as the change in velocity with time is the right one.

Notice that U can be defined up to constant. It is natural to make U = 0 when the separation between
particles is large enough that no interaction is experienced. When using coordinates other than Cartesian
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Figure 2: An object dropped from 10m above the ground falling exponentially -blue- and parabolically -red-

ones we will use the following transformation:

xi = fi(q1, q2, ..., qn), ẋi =

n∑
k=1

∂fi
∂qk

q̇k (55)

We substitute them in

L =
1

2

n∑
i=1

mi(ẋi
2 + ẏi

2 + żi
2)− U (56)

to get the following Lagrangian

L =
1

2

∑
i,k

aik(q)q̇iq̇k − U(q), (57)

We notice that in the new coordinates the Lagrangian will be still a quadratic function of the generalized
velocities but the kinetic energy may depend on the new coordinates as well.

The Lagrangian of open systems
If we have an open system A which interacts with a system B , we can consider A+ B as a closed system.
We can find the Lagrangian ofA by using the Lagrangian LA+B and replace the coordinates qB by functions
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of time. If A + B is closed we get then L = TA(qA, q̇A) + TB(qB , q̇B) − U(qA, qB), where the first two
terms are the kinetic energies of the system A and B and the third term is their combined potential energy.
We can now substitute for qB the given functions of time and remove TB(qB , q̇B) which, depending on time,
is a total time derivative of a function of time. We will get L = TA(qA, q̇A)− U(qA, qB(t)).

The motion of a system in an external field is described by a Lagrangian where the potential energy may
be an explicit function of time.

As an example the Lagrangian for a single particle moving in an external field has this general form

L =
1

2
mv2 − U(~r, t) (58)

The corresponding equation of motion is

m~̇v = −∂U
∂~r

(59)

Uniform field
When we consider physical systems where the same force acts on a particle at any point in the field consid-
ered, the field is called uniform. The associated potential energy is then

U = −~F · ~r. (60)

Application of the Lagrangian formalism to physical problems
The actual number of degrees of freedom of a physical system can be further reduced by constraints. i.e. a
system subjected to move within a confined region of space. If the friction and masses associated with the
structures imposing these constraints can be neglected we can follow the formalism described in this chapter
to find the equations of motion. We will just use as many generalized coordinates as the actual number of
degrees of freedom of our system. i.e. if we impose l number of constraints on a system with originally
n degrees of freedom then we can find the equations of motion of our system utilizing n − l generalized
coordinates.

Generalized forces and Lagrange multipliers

We can consider the case where the n generalized coordinates are not independent. All the virtual dis-
placements δqi are no longer possible but subjected to the imposed constraints. We can consider just one
condition

n∑
i=1

Λiδqi = 0 (61)

Notice that when given the constraints this equation defines Λi. There is a very special kind of constraint,
the one for which a quantity Φ can be defined such

n∑
i=1

Λiδqi = dΦ(q) (62)

12



In this case the constraint is equivalent to Φ(q) being a constant and it is called holonomic. In this case we
can express one generalized coordinate as a function of the n− 1 others. If the constraint is non-holonomic
then we need to keep all the coordinates and use Lagrange multipliers. In that case if there are s differential
constraints of the form (60) we have

Ai(q, q̇, q̈, t) = Qi(q, q̇, t) +

s∑
k=1

λkΛi
k(q, t) (63)

Examples
Problem 1

Figure 3: A double pendulum

Find the Lagrangian for the double pendulum (see Figure 3) placed near the surface of the Earth (accel-
eration g).

Solution
The coordinates are φ1 and φ2. Then

T1 =
1

2
m1l

2
1φ̇

2
1, U1 = −m1gl1 cosφ1 (64)

To find T2 for the second particle we start with Cartesian coordinates: We have

x2 = l1 sinφ1 + l2 sinφ2, y2 = l1 cosφ1 + l2 cosφ2; (65)

After taking the derivative and squaring it we get

T2 =
1

2
m2

(
ẋ2 + ẏ2

)
=

1

2
m2

(
l21φ̇

2
1 + l22φ̇

2
2 + 2l1l2 cos(φ1 − φ2)φ̇1φ̇2

)
(66)
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where we have used that cos(φ1 − φ2) = cosφ1 cosφ2 − sinφ1 sinφ2. The Lagrangian then is

L =
1

2
(m1 +m2)l21φ̇

2
1 +

1

2
m2l

2
2φ̇

2
2 +m2l1l2 cos(φ1 − φ2)φ̇1φ̇2 (67)

+ (m1 +m2)gl1 cosφ1 +m2gl2 cosφ2

Problem 2

Figure 4: A sling

A rigid rod rotates (see Figure 4) in a horizontal plane around a fixed point O with angular speed ω = φ̇.
A bead of mass m can slide on it without friction. Treat it like a point particle and find its Lagrangian and
the equations of motion.

Solution

We pick the plane of motion to be x− y with the z axis perpendicular to it. This is a Galilean system in
the sense that it is fixed and not rotating with the rod. We will use polar coordinates. Let φ be the angle and
r the radius indicating the position of the bead.

The kinetic energy is

T =
1

2
(ṙ2 + r2φ̇2). (68)

Notice that there is no potential energy, but this is not a free particle either. The speed φ̇ is provided by an
imposed external ω (i.e. an electric motor). The weight of the bead due to gravity is balanced by the normal
reaction force of the rod, but there is no friction. Consequently the external forces add up to 0. This is still a
constrained system. So the Lagrangian is

L =
1

2
(ṙ2 + r2φ̇2). (69)

And the E-L equations are:

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0 (70)
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How about φ? φ is constrained by the fact that φ̇ = ω. So the system has only one degree of freedom. And
the equation of motion is:

r̈ − rφ̇2 = 0 (71)

The solution of (70) is

r(t) = A cosh(ωt) +B sinh(ωt) (72)

Our initial conditions could be ṙ(0) = 0 and r(0) = r0. In that case the solution is

r(t) = r0 cosh(ωt) (73)

Note: (70) express the fact that the centripetal acceleration r̈ is equal to a “centrifugal force” rφ̇2.
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