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High Energy Bound-Free Absorption

If the photon is absorbed by a bound electron with a binding energy
much less than the photon energy, there is essentially no difference with
the previous case of free-free absorption. As a result the temperature de-
pendence is also with a factor β = −7/2. What is different though is that
the density of these electrons is not the ambient density of free electrons,
but an average square of the bound electron wave function, so the absorp-
tion rate cρκ is proportional just to the density of atoms, and hence α = 0
rather than α = 1. The contribution to opacity of this sort of photon absorp-
tion is often grouped with free–free absorption in what is called Kramers
opacity.

Bound–Bound Absorption and Low-Energy Bound–Free Absorp-
tion

In these cases the photon is absorbed by a bound electron whose bind-
ing energy is at least comparable to the photon energy. This contribution
to opacity involves complications of atomic physics not present for other
contributions which Weinberg does not discuss in his book. The heating
of interstellar hydrogen by low-energy bound–free absorption of photons
from hot stars will be covered later.

We will consider now:

Nuclear Energy Generation
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Primer on atomic nomenclature
The atomic number or proton number (symbol Z) of a chemical ele-
ment is the number of protons found in the nucleus of every atom of
that element. It uniquely identifies a chemical element and it is iden-
tical to the charge of the nucleus. In an uncharged atom, the atomic
number is also equal to the number of electrons.

Figure 1: Atomic number notation.
©Wikipedia

The sum of the atomic num-
ber Z and the number of neu-
trons N gives the mass number
A of an atom. Since protons and
neutrons have approximately the
same mass (and the mass of the
electrons is negligible for many
purposes) and the mass defect
of nucleon binding is also small
compared to the nucleon mass,
the atomic mass of any atom,
when expressed in unified atomic
mass units is within 1% of the
whole number A.

Atoms with the same atomic number but different neutron numbers,
and hence different mass numbers, are known as isotopes. A little
more than three-quarters of naturally occurring elements exist as a
mixture of isotopes, and the average isotopic mass of an isotopic mix-
ture for an element, determines the element’s standard atomic weight.
Important note: the convention when naming isotopes (and not
using chemical symbols, as i.e. 238U ) to either type the element’s
name and then put the mass number after the name or just U 238
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Nucleosynthesis
(From wikipedia)
Nucleosynthesis is the process that creates new atomic nuclei from
pre-existing nucleons (protons and neutrons) and nuclei. The first
nuclei were formed a few minutes after the Big Bang, through nu-
clear reactions in a process called Big Bang nucleosynthesis. After
about 20 minutes, the universe had expanded and cooled to a point
at which these high-energy collisions among nucleons ended, so only
the fastest and simplest reactions occurred, leaving our universe con-
taining about 75% hydrogen and 24% helium by mass. The rest is
traces of other elements such as lithium and the hydrogen isotope
deuterium. Nucleosynthesis in stars and their explosions later pro-
duced the variety of elements and isotopes that we have today, in a
process called cosmic chemical evolution. The amounts of total mass
in elements heavier than hydrogen and helium (called “metals” by as-
trophysicists) remains small (few percent), so that the universe still
has approximately the same composition.
Stars fuse light elements to heavier ones in their cores, giving off en-
ergy in the process known as stellar nucleosynthesis. Nuclear fusion
reactions create many of the lighter elements, up to and including iron
and nickel in the most massive stars. Products of stellar nucleosyn-
thesis remain trapped in stellar cores and remnants except if ejected
through stellar winds and explosions. The neutron capture reactions
of the r-process and s-process create heavier elements, from iron up-
wards.
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Supernova nucleosynthesis within exploding stars is largely responsi-
ble for the elements between oxygen and rubidium: from the ejection
of elements produced during stellar nucleosynthesis; through explo-
sive nucleosynthesis during the supernova explosion; and from the r-
process (absorption of multiple neutrons) during the explosion. Neu-
tron star mergers are a recently discovered major source of elements
produced in the r-process. When two neutron stars collide, a signifi-
cant amount of neutron-rich matter may be ejected which then quickly
forms heavy elements.
Cosmic ray spallation is a process wherein cosmic rays impact nu-
clei and fragment them. It is a significant source of the lighter nu-
clei, particularly 3He, 9Be and 10,11B, that are not created by stellar
nucleosynthesis. Cosmic ray spallation can occur in the interstellar
medium, on asteroids and meteoroids, or on Earth in the atmosphere
or in the ground. This contributes to the presence on Earth of cosmo-
genic nuclides.
On Earth new nuclei are also produced by radiogenesis, the decay of
long-lived, primordial radionuclides such as uranium, thorium, and
potassium-40.

Remember that we call the nuclear energy production per mass ε(ρ, T ).
What we want to do is to estimate the exponents of ε(ρ, T ) when we adjust
the function representing this production rate using a power-law expression:

ε(ρ, T ) ' ε1ρ
λ(kBT )

ν, (148)

where ε1, λ and ν are independent of ρ and T .
As we saw in the colored box the nuclear material left over from the

first three minutes of the big bang was chiefly 1H (that is, protons), plus
about 25% by mass 4He, and only a trace of 2H, 3He, and 7Li. These light
nuclei have less binding energy per nucleon than nuclei of medium atomic
weight like iron and nickel, so energy can be gained by fusion of hydrogen
and helium into heavier elements. But there are no stable nuclei with five
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or eight nucleons, so it is difficult (though not impossible) to gain energy
from helium in 1H-4He or 4He-4He collisions.

As long as hydrogen lasts in the center of a star, the dominant source
of nuclear energy will be the fusion of 1H into 4He, which has by far the
greatest binding energy of any of these light elements. There are two chief
routes by which hydrogen can fuse into helium. One is the proton–proton
chain of which the simplest version is

I : 1H+1 H→2 H+ e+ + νe + 1.18MeV

II : 1H+2 H→3 He + γ + 5.49MeV (149)
III : 3He +3 He→4 He +1 H+1 H+ 12.85MeV

The energies listed here for the proton–proton chain and below for the
CNO cycle are the energies for each reaction actually deposited in the stel-
lar material. Thus, where a positron is emitted, these energies include not
only the rest energymec

2 of the emitted positron e+ but also the rest energy
of the electron with which that positron inevitably annihilates. On the other
hand, the mean energy of the accompanying neutrino νe is subtracted from
the energy released, since virtually all neutrinos leave the star.

Each step of the PP I chain depicted above has its own reaction rate,
since different Coulomb barriers and cross sections are involved. The slow-
est step in the sequence is the initial one, because it involves the decay of
a proton into a neutron via p+ → n + e+ + νe. Such a decay involves the
weak force, another of the four known forces.

Notice that there are other branches for the PP chain, namely, the so-
called PP II chain,
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3He +4 He→7 Be + γ
7Be + e− →7 Li + νe
7Li +1 H→4 He +4 He

and the PP III chain,

7Be +1 H→8 B + γ
8B→8 Be + e+ + νe
8Be→4 He +4 He

The branching order and their ratios are depicted in the figure ??.
The other route is the CNO cycle, which in its simplest variant is

I : 1H+12 C→13 N+ γ + 1.95MeV

II : 13N→13 C + e+ + νe + 1.50MeV

III : 1H+13 C→14 N+ γ + 7.54MeV (150)
IV : 1H+14 N→15 O+ γ + 7.35MeV

V : 15O→15 N+ e+νe + 1.73MeV

VI : 1H+15 N→12 C +4 He + 4.96MeV

where carbon, nitrogen, and oxygen nuclei are present in the interstellar
matter from which stars like the Sun are formed (i.e. left over from nuclear
processes in an earlier generation of stars). They are catalysts, neither cre-
ated nor destroyed in a complete cycle. In both cases there are side branches
and extensions with different rates involved, but these simple versions pro-
vide us with sufficient examples to illustrate how ε(ρ, T ) is estimated. We
will not go into the detailed calculation of the rates of these various nuclear
reactions. We are interested in identifying various suppression factors in
the rates that tell us a good deal about which reactions are dominant, and
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Figure 2: The three branches of the pp-chain and the ratios observed in the
Sun. From Carroll&Ostlie
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about their temperature dependence.

Electromagnetic coupling

The rate of any reaction in which a single photon is emitted (such as
1H+2 H→3 He + γ in the proton-proton cycle or 1H+12 C→13 N+ γ in
the CNO cycle) is suppressed by a factor of order e2/~c = 1/137.

In physics, the fine-structure constant, also known as Sommerfeld’s
constant, commonly denoted by α, is a fundamental physical con-
stant which quantifies the strength of the electromagnetic interaction
between elementary charged particles. It is a dimensionless quan-
tity related to the elementary charge e, quantifying the strength of the
coupling of an elementary charged particle with the electromagnetic
field, by the formula 4πε0~cα = e2. As a dimensionless quantity, its
numerical value, is α = e2/~c = 1/137 is independent of the system
of units used.
While there are multiple physical interpretations for α, it received
its name from Arnold Sommerfeld, who introduced it in 1916, when
extending the Bohr model of the atom.It quantifies the gap in the fine
structure of the spectral lines of the hydrogen atom, which had been
measured precisely by Michelson and Morley in 1887. The relative
strengths of the coupling constants are below

Strong αs 1
E-M α 1/137
Weak αw 10−6

Gravity αg 10−39

Weak coupling
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The rate of any reaction in which a proton turns into a neutron with the
emission of a positron and neutrino (such as the first step
1H+1 H→ 2H + e+ + νe in the proton–proton cycle or the beta decays of
13N and 15O in the CNO cycle) is suppressed by two factors of the weak
coupling constant Gwk = 1.1664 × 10−11 MeV−2. Since the typical en-
ergy involved in these nuclear reactions is about 1 MeV, weak interaction
processes are typically suppressed by a dimensionless factor of order 10−22.

Coulomb barrier

The temperature dependence of nuclear reaction rates is chiefly due to
the necessity for colliding nuclei to leak through the Coulomb barrier, the
field of electrostatic repulsion between positively charged atomic nuclei.
The calculation of the effect of the Coulomb barrier on reaction rates re-
quires the use of elementary quantum mechanics. The result is that a re-
action involving two nuclei of atomic numbers Z1 and Z2 and an energy of
relative motion E is suppressed by a factor of order

B(E) = exp

[
−πZ1Z2e

2

√
2µ

~2E

]
= exp

(
C√
E

)
, (151)

where µ = m1m2/(m1+m2) is the reduced mass and C is the constant
in the exponent in Eq. (151):

C = πZ1Z2e
2

√
2µ

~2
, (152)

The nuclei colliding in a star have a range of values for the energy E of
relative motion, with probabilities governed by the requirements of kinetic
theory at temperature T . Assuming that nuclei spend most of their time
sufficiently far from other nuclei that their energy is mostly kinetic, the
probability of finding a pair of nuclei in a range of momenta d3p1d3p2 is
proportional to
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exp

(
− (~p1)

2

2m1kBT
− (~p2)

2

2m2kBT

)
d3p1d

3p2 = exp

(
− E

kBT

)
d3p (153)

× exp

(
− (~P )2

2(m1 +m2)kBT

)
d3P

where ~P ≡ ~p1+ ~p2 is the total momentum, and E = p2/2µ is the energy of
relative motion, with ~p ≡ µ(~p1/m1 − ~p2/m2) the relative momentum. The
rate ε of nuclear reactions per gram is then of the form

ε(ρ, T ) =

∫ ∞
0

dEf(E, ρ, T ) exp(−E/kBT )B(E)

=

∫ ∞
0

dEf(E, ρ, T ) exp

(
− E

kBT
− C√

E

)
. (154)

where f(E, ρ, T ) arises from power-law factors in the thermal distribution
of E and P and in the probability of the nuclear reaction occurring when
the nuclei reach zero separation, In practice, kBT is always much less than
C2, so the exponential exp will be very small unless E is much greater than
kBT , in which case exp(−E/kBT ) will be very small. The exponential
in Eq. (153) is therefore very sharply peaked at the energy ET where a
maximum occurs for

(
− E
kBT
− C√

E

)
. To find ET then

d

dE

(
− E

kBT
− C√

E

)
= − 1

kBT
+

C

2E
3/2
T

= 0 (155)

which gives

ET =

(
CkBT

2

)2/3

(156)
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The dominant factor in the temperature dependence of the reaction rate
(154) is the exponential function evaluated at E = ET

B(ET ) = exp

(
− ET

kBT
− C√

ET

)
= exp

(
−3
(
πZ1Z2e

2√µ
~
√
2kBT

)2/3
)
.

(157)

which numerically is:

B(ET ) = exp

[
−
(
Z2
1Z

2
2(µ/mp)×

7.726× 1010K

T

)1/3
]
. (158)

where mP is the proton mass.
The barrier penetration factor, B(E) is the main factor determining the

temperature dependence of the reaction rates. We can then use the above
estimate of the Coulomb barrier to determine the exponent ν in the formula
that is used to estimate the temperature dependence of the energy genera-
tion rate ε(ρ, T ) ' ε1ρ

λ(kBT )
ν . We take thinking that BT (T ) = T ν

ν = T
d

dT
BT '

1

3

(
Z2
1Z

2
2(µ/mp)×

7.726× 1010K

T

)1/3

. (159)

(This T−1/3 temperature dependence is sufficiently weak to justify ap-
proximating ε as proportional to a constant power of temperature.) Eqs.
(158) and (159) indicate as general rule that ν is one-third the absolute
value of the exponent in whatever barrier penetration factor dominates the
temperature dependence of the energy generation rate. Let us now apply
these general remarks to stars that derive their nuclear energy either from
the proton–proton chain or from the CNO cycle.
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