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1.1 Radiative Models

We will be deriving the differential equations and boundary conditions
for a star in which energy transport is dominated by radiation. We will see
that for a set of stars of a given age and initial uniform chemical composi-
tion (ie with stars in many clusters), any stellar parameter, such as radius,
luminosity, etc., may be expressed as a function of stellar mass. In conse-
quence, when any two of these parameters are plotted against one another,
the plot is a one-dimensional curve. (For example displaying the luminosity
vs effective temperature, the Hertzsprung–Russell relation diagram).

With the chemical composition fixed and uniform, we can regard the
pressure p(r), opacity κ(r), and nuclear energy production per mass ε(r)
as fixed functions of the density ρ(r) and temperature T (r). The star’s
structure is then described by four functions of r: the massM(r) contained
within a sphere of radius r; the radiant energy per second `(r) flowing
outward through a spherical surface of radius r; and the density ρ(r) and
temperature T (r). These four quantities are governed by four first-order
differential equations: the equations of hydrostatic equilibrium (6)

dP (r)

dr
= −Gρ(r)M(r)

r2
(6)

and (7)

dM(r)

dr
= 4πr2ρ(r) (7)

and also the equations of radiative transport (101)

dL(r)
dr

= 4πr2ε(r)ρ(r), (101)

and (107)

dT (r)

dr
= −3κ(r)ρ(r)L(r)

4acT 3(r)4πr2
. (107)
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The pressure p, Rosseland mean opacity κ, and nuclear energy produc-
tion per mass ε are assumed to be given as functions of density and tempera-
ture. We have then four equations for four unknown functions, ρ(r),M(r),
T (r), and L(r). With appropriate boundary conditions we can attempt to
solve them. We can take:

M(0) = L(0) = 0 (110)

at the center of the star, and at the surface r = R:

ρ(R) = T (R) = 0 (111)

We know that T (R) = 0 at the star surface is not compatible with
observations. But practically we could use (110) as a good approximation
and apply conditions like (111) at any other radius (this would be called
“nominal radius”). In particular smoothness and isotropy in density breaks
down at values of r for which R − r is no longer large compared with
the typical photon free path 1/ρ(r)κ(r) at r. This region is what is called
the stellar atmosphere. In this region we would need to use equation (43)
of radiative equilibrium. This nominal radius R (which is not the radius
of the star’s surface) is where the density and temperature would vanish if
equations (6), (7), (101) and (107) are valid up to it.

For a real star we can define a surface at which the density and tem-
perature vanish, a real “surface” with radius Rtrue beyond which there is
mostly empty space, with only outgoing radiation and some gas at very low
density, what is called the solar corona. But this is not the surface from
which comes the light we see. To the extent that the light of a star resem-
bles black-body radiation, we can think of it as coming from an effective
surface with radius Reff , defined by the equation

σT 4(Reff)× 4πR2
eff = L, (112)

σ = 2π5k4

15c2h3 = ac/4 = 1.3806503×10−23 J/K is the Stefan–Boltzmann
constant, a = 4σ/c = 7.565767 × 10−16 J/(m3K4) is called the radiation
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constant, L is the star’s luminosity, which is actually the value of L(r) at
any radius r outside the stellar core in which nuclear energy production
occurs. The depth of the effective surface below the true surface can be
characterized by what is called its optical depth,

τeff =

∫ Rtrue

Reff

κ(r)ρ(r)dr (113)

The optical depth is a dimensionless number (κ has dimensions of cm2/grams
and ρ has dimensions of grams/cm3 and of course the radius has dimen-
sions of length (i.e. cm). Since the typical photon free path is precisely
1/κ(r)ρ(r), we expect the optical depth τeff to be of the order one. It is
customary to take it to be 2/3, performing calculations that Weinberg call
dubious in his book.

Obviously the thickness of the stellar atmosphere is much smaller than
R the radius of the star. We could apply the differential equations (6),
(7), (101) and (107) with the boundary conditions (110) and (111), and the
understanding that for (112) we are only thinking that the temperature T
and the density ρ are much lower than the corresponding values deep in the
star’s interior. For example, the central density and temperature of the Sun
are (ρ = 98± 15) g/cm3 and T = (13.6± 1.2)× 106 K, while even deep
in the stellar atmosphere, at an optical depth τ = 10, the solar density and
temperature are only about ρ = 5× 10−7 g/cm3 and T = 9, 700K.

Equations (6), (7), (101) and (107) are four order equations that depend
only on one independent variable: the radius. The solutions then can be
expressed as a one-parameter family of solutions. This is called:
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Vogt-Russell theorem
The Vogt–Russell theorem states that the structure of a star, in hydro-
static and thermal equilibrium with all energy derived from nuclear
reactions, is uniquely determined by its mass and the distribution of
chemical elements throughout its interior. In all truthfulness this is
not really a theorem because it has not being proven. We have two set
of boundary conditions M(0) = L(0) = 0 at the center of the star,
and at the surface ρ(R) = T (R) = 0 But we could just use ρ(0) and
T (0) with some tentative trial values ρc and Tc at the center and have
withM(0) = L(0) = 0 four initial conditions. When integrating (6),
(7), (101) and (107) with these four initial conditions we can obtain
a solution that will depend on ρc and Tc. We could adjust the values
of ρc and Tc so that ρ(R) = T (R) = 0 at some radius R. And we
will have a solution, but it might not be unique. These solutions will
depend on the radius.

There are good reasons to choose as the free parameter the mass instead
of the radius. For most of the life of the star the mass will not change much
(it will start blowing mass only at an old age).

We can put then the equations in term onM starting with (6),

dr(M)

dM
=

1

4πr2(M)ρ(M)
(114)

(7)

dP (M)

dM
= − GM

4πr4(M)
, (115)

(101)
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dP (L)
dM

= ε(M), (116)

and (107) becoming

dT (M)

dM
= − 3κ(M)L(r)

4acT 3(M) (4πr2(M))2
. (117)

We will know impose the following boundary conditions. AtM = 0,

r(M) = L(M) = 0 (118)

and atM =M ,

ρ(M) = T (M) = 0 (119)

There is no need to input any other stellar parameter. It is this depen-
dence of stellar structure on just the stars’ mass that explains a striking
result from observations of groups of stars (like clusters).

The dozens or hundreds of stars in the Pleiades (an open cluster) gener-
ally condensed at about the same time from the same cloud of interstellar
material. This implies that they all have a near identical chemical composi-
tion and age as well as distance from us, but they do differ in their masses.
The only observable distinctive feature of the stars in such a cluster are the
stars’ masses.

The main result is that when any pair of observables parameters for the
cluster stars are plotted against each other, the resulting points for each star
fall on a one-dimensional curve, each one corresponding to a different stel-
lar mass.

This is not so pronounced for the thousands or hundreds of thousands
of stars in a globular cluster like M15, where there is a greater spread in
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Figure 1: Spectral lines, effective temperatures, luminosity and colors of
stars(credit Wikipedia).

age and initial chemical composition. But even in an old cluster like this
the plot of any pair of observables against each other is a more or less thick-
ened curve.

The most easily observable stellar quantities are the luminosity L (or, if
the distance d to the cluster is not known, the apparent luminosity L/4πd2)
and the effective temperature Teff .

The effective temperature is defined by the condition that L = σT 4
eff ×

4πR2 but it is estimated from observations of the star’s color and/or spec-
trum, as described in the figures 1 and 2.

6



Stellar Taxonomy
The history of stellar classification is a very interesting one. Some-
thing that has been recognized only lately is that many female as-
tronomers were the leaders in the field and played a major role in its
development.
Stellar classification started soon after Fraunhofer discovered the 574
dark lines in the solar spectrum. stellar classification is the classi-
fication of stars based on their spectral characteristics. Electromag-
netic radiation from the star is analyzed by splitting it with a prism
or diffraction grating into a spectrum exhibiting the rainbow of col-
ors interspersed with spectral lines. Each line indicates a particular
chemical element or molecule, with the line strength indicating the
abundance of that element. The spectral class of a star is a short code
primarily summarizing the ionization state, giving an objective mea-
sure of the photosphere’s temperature.
Most stars are currently classified under the Morgan–Keenan (MK)
system using the letters O, B, A, F, G, K, and M, a sequence from the
hottest (O type) to the coolest (M type). Each letter class is then sub-
divided using a numeric digit with 0 being hottest and 9 being coolest
(e.g., A8, A9, F0, and F1 form a sequence from hotter to cooler). The
sequence has been expanded with classes for other stars and star-like
objects that do not fit in the classical system, such as class D for white
dwarfs and classes S and C for carbon stars.
In the MK system, a luminosity class is added to the spectral class
using Roman numerals. This is based on the width of certain absorp-
tion lines in the star’s spectrum, which vary with the density of the
atmosphere and so distinguish giant stars from dwarfs. Luminosity
class 0 or Ia+ is used for hypergiants, class I for supergiants, class II
for bright giants, class III for regular giants, class IV for sub-giants,
class V for main-sequence stars, class sd (or VI) for sub-dwarfs, and
class D (or VII) for white dwarfs. The full spectral class for the Sun is
then G2V, indicating a main-sequence star with a surface temperature
around 5,800 K.
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Figure 2: Chromaticity, effective temperatures, colors and examples of stars
from Weinberg’s book.

The graph of observed absolute or apparent luminosity versus effective
temperature is known as the Hertzsprung–Russell diagram.

In practice, the Hertzsprung–Russell diagram of a cluster is more like a
thick curve than a straight or curved line. The reason for the dispersion is
due to the different stage in the life of stars that one can plot at a given time,
i.e. the dispersion in the initial conditions. But it can clearly be observed in
the data that there is a one-dimensional curve of luminosity versus effective
temperature, not points scattered all over the plot.”

The Hertzsprung–Russell diagram for a cluster or group of stars com-
monly contains a main sequence, consisting of stars like the Sun that are
still burning hydrogen at their cores. On the main sequence L increases
smoothly with Teff , with the most massive stars the hottest and most lumi-
nous.

As the cluster evolves, the Hertzsprung–Russell diagram develops a
red giant branch, consisting of stars that have converted most of the hy-
drogen at their cores to helium, and are burning hydrogen only in a shell
around the inert helium core. On this branch, the effective temperature
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Figure 3: A sketch of an HR diagram for a few stars in our solar neigh-
borhood (credit Prof. Richard Pogge, OSU, http://www.astronomy.ohio-
state.edu/ pogge/Ast162/Unit1/hrdiag.html)
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Figure 4: The relation between a star’s luminosity, in units of the Sun’s lu-
minosity denoted L�, and the star’s effective temperature in kelvin degrees,
for the main-sequence stars in the Hertzsprung-Russell diagram. The stel-
lar masses that are given along the main-sequence curve are in units of the
Sun’s mass, denoted M�. Stars of higher mass are hotter and more lumi-
nous. All of these stars shine by hydrogen burning with a lifetime that is
also denoted along the main-sequence curve. More massive stars burn their
hydrogen fuel at a faster rate and have shorter lifetimes. Copyright 2010,
Professor Kenneth R. Lang, Tufts University
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decreases (and radius increases) with increasing luminosity, accounting
for the red color of very luminous red giant stars such as Betelgeuse and
Antares. The heavier stars on the main sequence have larger L and there-
fore evolve more quickly, so as time passes more and more of the upper
part of the main sequence bends over into the red giant branch. Observa-
tions of this main sequence turn-off therefore indicate the age of the cluster.
Eventually the more massive stars of the cluster will begin to burn helium,
and the Hertzsprung–Russell diagram will develop further complications,
but it remains a more-or-less one-dimensional curve, as described by the
Vogt–Russell theorem.
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Figure 5: A typical H-R diagram from introductory textbooks
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