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Crossover

The temperature at which the rates of energy production in the CNO
cycle and proton–proton chain equalize is called crossover temperature.
The rate of the reactions in the proton–proton chain is suppressed by the
Coulomb barrier by a factor exp(−15.7×(107T )−1/3) while then the rate of
the reactions in the CNO cycle is suppressed by a factor exp(4.4×−15.7×
(107T )−1/3). It is further suppressed relative to the proton–proton chain by
the ratio of the number of CNO nuclei to hydrogen nuclei, which for the Sun
is about 10−3, and since a photon is emitted, also by a factor e2/~c ' 10−2.
On the other hand, the reaction p + p → d + e+ + ν in the proton–proton
chain is a weak interaction, so its rate is proportional to the square of the
weak coupling constant, and is therefore suppressed by a dimensionless
factor (GwkE

2)2, which for E ∼ 1 MeV is about 10−22. So, very roughly,
the crossover temperature at which the CNO cycle and the proton–proton
chain have competitive rates is given by

10−13 × 10−2 × exp(−4.4× 15.7(107T )−1/3

≈ 10−22 × exp(−15.7(107T )−1/3) ≈ 2.5× 107 K,

This is higher than the estimated central temperature of the Sun (1.36×
107 K). Notice then that this means that for stars that have masses lower
than the M� the proton-proton chain dominates energy production while
with masses higher than the Sun starting with those which have core tem-
peratures T > 2.5× 107 K the CNO cycle dominates it.

Beyond Hydrogen Burning

When the hydrogen has been converted to helium in a star’s center, the
star leaves the main sequence and becomes a red giant, in which the con-
version of hydrogen to helium continues in a shell surrounding the helium
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core. The core temperature continues to grow, and when it becomes suf-
ficiently high it becomes the turn of helium to undergo nuclear reactions.
Although there is no stable nucleus that can be formed in a collision of a
proton and a 4He nucleus or in the collision of two 4He nuclei, in particular
this one can produce an unstable state of the nucleus of 8Be that lives long
enough before it undergoes fission back into two 4He nuclei, so that it can
serve as an intermediary in the carbon production reactions:

a : 4He+4 He→8 Be+ γ (174)
b : 4He+8 Be→12 C + γ.

This sequence of two-body reactions, does not lead to an energy production
rate per volume ερ proportional to ρ2, as in the proton–proton chain and the
CNO cycle. This is because there is only a small probability P for the
8Be nucleus to absorb another 4He nucleus before it fissions. Thus ερ is
proportional to ρ2P , and since P when small is itself proportional to ρ, ερ
is proportional to ρ3, and therefore the exponent λ in Eq. (1.5.1) is λ = 2.
The temperature dependence of ε is harder to estimate. The first step in
the reaction a is endothermic, requiring an energy E of relative motion of
the two 4He nuclei of at least 92 keV. In order for 4He nuclei to have any
chance of having energies this large, the temperature must be at least 108

K. Even at such relatively high temperatures, there are sizable Coulomb
barriers both in the rate for reaction a and in the probability P that a 8Be
nucleus will experience reaction b instead of fissioning. The only reason
why carbon production is non-negligible at temperatures of order 108 K to
109 K is that there is an unstable state of 12C that provides a resonance in
the 4He +8 Be channel at an accessible excitation energy of 310ZZ keV.
This unstable state has an appreciable chance of decaying into the stable
ground state of carbon, with the emission of a 7.4 MeV photon. Because of
the pair of Coulomb barriers plus the exothermic nature of reaction a, the
exponent ν in equation (148)

ε(ρ, T ) ' ε1ρ
λ(kBT )

ν, (148)
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for the temperature dependence of carbon production is quite large, es-
timated to be of order 30 to 40, depending on the temperature. Once 12C
is formed in this way, it is possible to produce heavier nuclei in various
reactions that are suppressed mostly by Coulomb barriers: 4He+12 C →16

O+ γ, 4He+16O →24 Mg+ γ, 12C+12C →24 Mg+ γ, and so on. There
are also reactions that destroy but do not produce various light nuclei with
relatively small binding energies, including 2H , 3He, 6Li, 7Li, 9Be, 10B,
and 11B. These nuclei are found spectroscopically in interstellar clouds,
and in consequence their measured abundance provides a valuable lower
bound on the cosmological abundance of light elements left over from the
beginning of the big bang.

The main sequence

We saw that stellar parameters such as radius, luminosity, central tem-
perature, effective surface temperature, etc. all depend only on the star’s
mass, age, and initial chemical composition. This is why, when any pair of
these parameters for a sample of stars in a cluster that all began at the same
time with the same uniform chemical composition are plotted against each
other, the values of these parameters will fall close to a one-dimensional
curve, such as the Hertzsprung–Russell diagram comparing luminosity and
effective surface temperature. We are interested in understanding the func-
tional relationship among them. IN general plotting the curves requires
detailed physical assumptions and numerical calculation. For stars that are
still on the main sequence, burning hydrogen at their cores, it is possible to
make a good estimate of the form of these curves using dimensional anal-
ysis, together with the assumption of power-law behavior for the rate per
mass ε of nuclear energy generation and for the opacity κ:
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ε = ε1ρ
λ(kBT )

ν, κ = κ1ρ
α(kBT )

β, (175)

with κ1, ε1, α, β, λ, ν all constants which we assume to depend only on the
chemical composition. (ie. before we found that α = β = 0 for Thomson
scattering, and α = 1 and β = −7/2 for free-free absorption. Later we
found λ = 1 for the p-p chain and CNO cycle; ν ≈ 5 for the p-p chain
and a larger value for the CNO cycle, and also ν weakly depending on the
temperature, ν ∝ T−1/3).

Our analysis will be limited to stars in which thermal energy is trans-
ported only by radiation. Each stellar parameter will turn out to be depen-
dent only on the star’s mass M and a pair of quantities N1 and N2 that de-
pend on chemical composition and fundamental physical constants. Since
there are no dimensionless ratios among M, N1, and N2, any stellar pa-
rameter will be proportional to a product of powers of M, N1, and N2,
with exponents fixed by dimensional analysis. This only works for stars
on the main sequence whose chemical composition (on which κ1, α, etc.
depend) is still approximately uniform. For red giant stars whose stellar pa-
rameters also depend on the radius of the helium core, dimensional analysis
is not enough. It is also not enough even if we assume that non-uniformities
evolve from an initially uniform composition, because then stellar parame-
ters depend on the age of the star, as well as on M, N1, and N2.

We will write the equations for the luminosity and temperature (101)
and (107)

dL(r)
dr

= 4πr2ε(r)ρ(r), (101)

dT (r)

dr
= −3κ(r)ρ(r)L(r)

4acT 3(r)4πr2
. (107)
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in terms of ρ, kBT, and L∗ ≡ L/ε1;

dL∗(r)
dr

= 4πr2ρλ+1(r) (kBT (r))
ν , (176)

d (kBT (r))
4

dr
= −3N1ρ

α+1(r) (kBT (r))
β L∗(r)
4πr2

, (177)

with

N1 ≡
κ1ε1k

4
B

ca
. (178)

We will begin by assuming that the pressure p is dominated by gas pressure,
which is the case for all but the most massive stars. The pressure then
is well approximated by the ideal gas law, p = kBTρ/m1µ, where µ is
the molecular weight and m1 is the mass of unit atomic weight. And the
equations (6) and (7) become

d (ρ(r)kBT (r))

dr
= −N2

ρ(r)M(r)

4πr2
(179)

dM(r)

dr
= 4πr2ρ(r) (180)

where

N2 ≡ 4πGm1µ. (181)

If we are dealing with uniform chemical composition, the stellar parameters
R, L∗ ≡ L/ε1, ρ(0), kBT (0), etc. can depend only on N1, N2, and M .
Now we want to determine the proper dimensionalities of N1 and N2 in
terms of length, time and mass. Energy production rate has dimensions,

[ε] = [energy][mass]−1[time]−1 = [velocity]2[time]−1 = [length]2[time]−3,
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[ε1] = [length]2[time]−3[mass/length3]−λ[energy]−ν,

= [length]2+3λ−2ν[time]−3+2ν[mass]−λ−ν. (182)

Since 1/κρ is the mean free path opacity it has dimensions
[κ] = [length]−1/[mass/length3] and then

[κ1] = [length]−1[mass/length3]−1−α[energy]−β,

= [length]2+3α−2β[time]2β[mass]−1−α−β. (183)

and

[ca/k4B] = [energy][time]−1[area]−1[energy]−4

= [energy]−3[length]−2[time]−1,

= [length]−8[time]5[mass]−3. (184)

and N1 and N2

[N1] = [length]12+3λ−2ν+3α−2β[time]−8+2ν+2β[mass]2−λ−ν−α−β (185)

[N2] = [G][mass] = [velocity]2[length] = [length]3[time]−2. (186)

To calculate the stellar radius R, we ask what product of the expression
MANA1

1 NA2
2 has the dimensions of length. Setting the numbers of powers

of length, time, and mass in this product respectively equal to +1, 0, and 0,
we find

powers of length : 1 = (12 + 3λ− 2ν + 3α− 2β)A1 + 3A2, (187)

powers of time : 0 = (−8 + 2ν + 2β)A1 − 2A2, (188)
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powers of mass : 0 = A+ (2− λ− ν − α− β)A1, (189)

Using Eq. (188) to eliminateA2 in Eq. (187) givesA1; Eq. (188) then gives
A2; and using this in Eq. (189) gives A.

A =
−2 + λ+ ν + α + β

3λ+ ν + 3α + β
, (190)

Then

A1 =
1

3λ+ ν + 3α + β
, (191)

and

A2 =
−4 + ν + β

3λ+ ν + 3α + β
, (192)

The stellar radius R then will be

R ∼= MANA1
1 NA2

2 (193)

with A, A1, and A2 provided by (190)-(192). For the luminosity we get

[L] = [energy]/[time] = [length]2[time]−3[mass],

so L∗ ≡ L/ε1 has the dimensions

[L∗] = [length]−3λ+2ν[time]−2ν[mass]1+λ+ν.

Then

L∗ ∼= MBNB1
1 NB2

2 .
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where

B =
(1 + λ+ ν)(3α + β) + (3− α− β)(3λ+ ν)

3λ+ ν + 3α + β
, (194)

and

B1 = −
(3λ+ ν)

3λ+ ν + 3α + β
, (195)

and

B2 =
ν(3α + β) + (4− β)(3λ+ ν)

3λ+ ν + 3α + β
, (196)

and obviously

L = ε1L
∗ ∼= ε1M

BNB1
1 NB2

2 . (197)
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